The mission of the PhD in Geospatial Information Sciences degree program is to cultivate researchers capable of advancing the frontiers of knowledge in the geospatial information sciences through improved theories, new technologies, innovative methodologies, effective quantitative analyses and integrative applications.

Jointly offered by the School of Economic, Political and Policy Sciences, the School of Natural Sciences and Mathematics and the Erik Jonsson School of Engineering and Computer Science, this unique program reflects geospatial information science’s origins at the confluence of multiple disciplines including geography, computer science, engineering, geology and various social, policy and applied sciences.

Unlike programs at other schools in which geospatial information sciences are offered as a concentration within traditional geography, geology, environmental science or engineering programs, the degree at UT Dallas is devoted solely to GIS, focusing on scientific and technological advances as well as novel application in a variety of substantive areas. As such, it provides a unique option for students wishing to concentrate in this inherently cross-disciplinary area.

Graduates find employment in the burgeoning geospatial technology industry, in research departments of public and private organizations and in major academic institutions because of their ability to build bridges to other disciplines.

Program Description
The PhD in Geospatial Information Sciences requires 75 semester credit hours minimum beyond the baccalaureate degree. For complete admission and degree requirements, view the Graduate Catalog at catalog.utdallas.edu.

Career Opportunities
Graduates of the program seek positions such as geospatial scientist and researcher, professor and environmental scientists in government and private sector.

 Marketable Skills
The Doctor of Philosophy in Geospatial Information Sciences (GIS) program is to cultivate innovative researchers capable of advancing the frontiers of knowledge in GIS through improvements and innovations to theories, methodologies, algorithms, analytics, and applications.

- Students will be able to explain the theoretical components underlying the geospatial information sciences and their associated mathematical, geometrical and computational foundations.
- Students will be able to build models using advanced geospatial methodologies and/or quantitative analysis tools to solve complicated problems in one of the following specialization areas: (a) geocomputation and spatial information management, (b) spatial analysis and modeling, or (c) remote sensing and image science.
- Students will be able to conduct innovative research that advances theory or methodology in geospatial information sciences.