The PhD in Chemistry degree program is designed to produce graduates with a focus on innovation and problem solving in interdisciplinary cutting edge research areas such as organic and inorganic materials, nanotechnology, biotechnology and polymer chemistry. These graduates, with their broad course background, research skills and practical attitudes should find ready employment in industry or academic positions. A spectrum of courses provides the student with a broad knowledge of chemistry.

The department has the equipment and facilities necessary for routine use by its faculty and students in teaching and research. Larger items include: 270 MHz (2), 400 MHz, 500 MHz and 600 MHz multi-nuclear FT-NMR spectrometers; single crystal and powder x-ray diffractometers; assorted spectrophotometers utilizing fluorescence, phosphorescence and absorption; peptide synthesizers; gel permeation chromatographs; workstations with molecular modeling software; and scanning tunneling and atomic force microscopes. The program also participates in the Alan G. MacDiarmid NanoTech Institute, which houses instrumentation for modern materials science research. Facilities external to chemistry, but readily available to its use, include a library, computer center, cleanroom and well-equipped machine and electronics shops.

Program Description
The PhD in Chemistry requires 75 semester credit hours minimum beyond the baccalaureate degree. For complete admission and degree requirements, view the Graduate Catalog at catalog.utdallas.edu.

Career Opportunities
Graduates of the program seek positions such as: research scientist in public and private sector, academic and industrial scientist and professor.

 Marketable Skills
The PhD in Chemistry degree focuses on innovation and problem-solving in interdisciplinary, cutting-edge research areas such as organic and inorganic materials, nanotechnology, biotechnology and polymer chemistry, preparing graduates with the following skills:

- Laboratory and chemical synthesis skills
- Independent research and operation of chemical instrumentation
- Problem-solving skills and critical thinking
- Creativity and innovation in experimental design
- Scientific writing and communication