The MS in Computer Science degree program offers intensive preparation in design programming, theory and applications. Training is provided for both academically oriented students and students with professional goals in the many business, industrial and governmental occupations requiring advanced knowledge of computing theory and technology.

Courses and research opportunities are offered in a variety of subfields of computer science, including operating systems, computer architecture, computer graphics, pattern recognition, automata theory, combinatorics, artificial intelligence, machine learning, virtual reality, database design, computer networks, programming languages, software systems, analysis of algorithms, computational complexity, parallel processing, VLSI, computational geometry and computer vision.

A comprehensive program of evening courses is offered, providing both part-time and full-time students with a convenient means to select individual courses of interest.

The University maintains a large network of computer facilities including specialized computers for research within the program. In addition to computer science faculty, many other individuals at the University are involved in computer-related work in the physical and social sciences and in various areas of business and management. Computer science students with an interest in these important application areas may have opportunities to consult and work with talented faculty from a wide range of disciplines.

Program Description
The MS in Computer Science requires the completion of a minimum of 33 semester credit hours.

For complete admission and degree requirements, view the Graduate Catalog at catalog.utdallas.edu.

Career Opportunities
Graduates of the program seek positions such as Software Engineer, Software Developer, Data Scientist, Programmer Analyst, Computer Systems Analyst, Database Administrator and Network Systems and Data Communication Analyst.

 Marketable Skills
Upon successful completion of the MS in Computer Science, graduates will be able to enter the workforce with the following skills:

- Designing algorithms to solve advanced computing problems
- Critical thinking
- Developing advanced software systems
- Comparing merits and demerits of different solutions