The Master of Science in Geosciences (with thesis) degree program provides a curriculum that is designed to be relevant to many of today’s career prospects, especially, for those completing the degree with a thesis. Opportunities to interact in a research context with select faculty are available for qualified students. Students can benefit from research programs, a renovated facility and several convenient evening academic courses. Geosciences is a long-established program at the University and traces its deep roots to the early 1960s.

The graduate program prepares students for employment in the energy and environmental sectors, geospatial technologies in industry and government or academia. The MS degree (with thesis) is typically required as preparation for entry into a doctoral program at any university.

Program Description
The MS in Geosciences requires the completion of a minimum of 36 semester credit hours. For complete admission and degree requirements, view the Graduate Catalog at catalog.utdallas.edu.

Career Opportunities
Graduates of the program seek positions such as: environmental scientist, petroleum geologist, development geologist, engineering geologist, exploration geophysicist, field geologist, geological consultant, geotechnician, laboratory technician and radiation safety officer.

 Marketable Skills
Up until recently, when the MS degree in the Geosciences was clearly the “degree of choice,” an advanced degree in Geosciences allowed the degree owners to pursue opportunities in a wide range of geoscience-related professions, including the extractive C-based energy industry, but ALL of that has changed. Opportunities in the general realm of environmental systems remain very strong. In addition, with an advanced degree, degree owners can expand their horizons to different realms, including business and law. Upon successful completion of the MS in Geoscience degree program, UT Dallas graduates will expand their prior training and education with specialist knowledge and advance their understanding in relevant scientific areas including, but not limited to, geophysics, tectonics, hydrology, environmental geoscience, and geoscience education. Graduates’ skills include:

• Broad and expansive knowledge of geophysics, earth history, environmental geochemistry, tectonics
• Methodological skills in experimental and computational techniques applied to research questions in select aspects of the geosciences
• Ability to work in teams in diverse settings under a range of circumstances
• Ability to communicate scientific ideas and concepts in oral and in written form
• Advanced ability to apply critical thinking and quantitative skills to solve complex problems