Table 3: A Sampling of Extrasolar Planets

Name of Star	Planet	Year of Planet Discovery	$\begin{array}{\|c\|} \hline \text { Class } \\ \text { of } \\ \text { Star } \\ \hline \end{array}$	Minimum Mass of Planet	$\begin{array}{\|c\|} \hline \text { Distance } \\ \text { from Star } \\ \text { in AU } \\ \hline \end{array}$	Scaled Distance from Star
51 Pegasi	b	1995	G	$0.47 \times \mathrm{MJ}$	0.05	
70 Virginis	b	1996	G	$7.4 \times \mathrm{M}_{J}$	0.48	
47 Ursa Majoris	b	1996	G	$2.6 \times \mathrm{MJ}^{\prime}$	2.1	
	c	2001		$1.3 \times \mathrm{M}_{J}$	7.7	
Upsilon Andromedae	b	1996	F	$0.69 \times \mathrm{Mr}_{\mathrm{r}}$	0.06	
	c	1999		$1.98 \times \mathrm{M}_{\mathrm{J}}$	0.83	
	d	1999		$3.95 \times \mathrm{MJ}$	2.5	
16 Cygni	b	1996	G	$1.68 \times \mathrm{M}_{\mathrm{J}}$	1.7	
Gliese 876	b	1998	M	$1.98 \times \mathrm{MJ}$	0.21	
	c	2001		$0.56 \times \mathrm{M}$	0.13	
	d	2005		$\mathbf{0 . 0 1 8} \times \mathrm{M}_{\mathrm{J}}$	0.02	
HD 75289	b	1999	G	$0.42 \times \mathrm{MJ}$	0.046	
Gliese 581	b	2005	M	$0.049 \times \mathrm{M}_{\mathrm{J}}$	0.041	
	c	2007		$0.016 \times \mathrm{M}_{\mathrm{J}}$	0.073	
	d	2007		$0.024 \times \mathrm{M}_{\mathrm{J}}$	0.024	
	e	2009		$0.006 \times \mathrm{M}_{J}$	0.03	
HD 134987	b	1999	G	$1.58 \times \mathrm{M}_{\mathrm{J}}$	0.78	
	c	2009		$0.87 \times \mathrm{MJ}$	5.8	
HD 121504	b	2003	G	$1.58 \times \mathrm{MJ}$	0.32	
Epsilon Eridani	b	2000	K	$1.55 \times \mathrm{MJ}$	3.39	

M_{J} is the mass of Jupiter, which is $1,900,000,000,000,000$ trillion kg or about 318 times the mass of the Earth. For comparison: Earth's mass is about $0.003 \mathrm{M}_{\mathrm{J}}$; Neptune's mass is about $0.05 \mathrm{M}_{\mathrm{J}}$. Masses in bold indicate probable rocky planets like the Earth.
An astronomical unit (AU) is 150 million km . Using the same scale factor as for the Scale Model Solar System of 1:10 billion, 1 AU $=15 \mathrm{~m}$.
Stars are considered to be object "a" for each planetary system. Planets orbiting them will have the name of the star, and then b, c, d, etc. More information on these and other recently discovered planetary systems is available from the Extrasolar Planet Encyclopaedia at http://exoplanet.eu/ and from NASA's Planetquest at http://planetquest.jpl.nasa.gov.

