1. Let $A \subset \mathbb{R}^2$ be the graph of the function $f : \mathbb{R} \to \mathbb{R}$ given by:

$$f(x) = \begin{cases}
\sin \left(\frac{2021}{x} \right), & \text{if } x \in [-1, 1] \setminus \{0\}; \\
2020, & \text{if } x = 0.
\end{cases}$$

Is the set $A \cup \{(0, y) \in \mathbb{R}^2 : -1 \leq y \leq 1 \}$ measurable with respect to the Lebesgue measure on the plane? Justify your answer.

2. Let $f : [0, 1] \to \mathbb{R}$ be a Lebesgue integrable function and let $K \subset [0, 1]$ be a measurable subset such that $\mu(K) > 0$ and $f(x) > 0$ for each $x \in K$ (here μ stands for the Lebesgue measure). Show that

$$\int_K f d\mu > 0.$$

3. Let $f : [0, 1] \to \mathbb{R}$ be a Lebesgue integrable function. Assume that

$$\int_0^x f d\mu = 0 \quad \text{for each } x \in [0, 1].$$

Show that $f(x) = 0$ for almost all $x \in [0, 1]$.

4. Let $f : [a, b] \to \mathbb{R}$ be a C^1-function (that is f is differentiable and f' is continuous). Show that

$$\text{Var}_a^b[f] = \int_a^b |f'(x)| dx.$$

(here $\text{Var}_a^b[f]$ stands for the variation of f on $[a, b]$).

Good luck!
Problem 1. Let E be a Banach space and $C \subset E$ a non-empty convex set.

(a) Show that if $x \in C$ and $y \in \text{int}(C)$ then for every $t \in (0,1)$ we have

$$tx + (1-t)y \in \text{int}(C);$$

(b) Show that if C is closed then C is also weakly closed (with respect to the weak topology $\sigma(E,E^*)$).
Problem 2. Consider the Euclidean space $\mathbb{E} := \mathbb{R}^n$, i.e. \mathbb{E} is equipped with the norm

$$
\| x \|_2 := \left[\sum_{k=1}^{n} x_k^2 \right]^{\frac{1}{2}}, \quad x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n.
$$

Suppose C is an open bounded convex set such that $0 \in C$ and $C = -C$.

(a) Show that the function

$$
\| x \| = \inf \{ r > 0 : x \in rC \}, \quad x \in \mathbb{R}^n
$$

is a norm on \mathbb{R}^n.

(b) Show directly that there exist constants $C, c > 0$ such that

$$
\forall x \in \mathbb{E} \quad c\| x \|_2 \leq \| x \| \leq C\| x \|_2.
$$
Problem 3. Let E be a reflexive Banach space and consider a continuous convex function $\varphi : E \to \mathbb{R}$ such that $\lim_{\|x\| \to \infty} \varphi(x) = \infty$. Show that

$$\exists x_0 \in E \quad \varphi(x_0) = \inf_{x \in E} \varphi(x).$$
Problem 4. Consider the Banach space $E := C([0, 1], \mathbb{R})$ (equipped with the norm $\|\varphi\|_\infty := \sup_{t \in [0, 1]} |\varphi(t)|$). Define the following linear operator $A : E \to E$ by

$$(A\varphi)(t) := \int_0^t \varphi(s)s^2 ds, \quad \varphi \in E, \ t \in [0, 1].$$

(a) Show that the linear operator A is a bounded,

(b) Compute $\|A\|$.

Complex Analysis Qualifying Exam

Summer 2020
Friday, August 7, 2020

1. [25 points] True or false (Justification is needed):
 (a) If \(f(z) \) is analytic on a domain \(D \subseteq \mathbb{C} \), and \(\gamma \) is a closed curve in \(D \), then \(\int_{\gamma} f(z) \, dz = 0 \). Is this true for any \(f(z) \) and any \(D \)?
 (b) If \(f(z) \) is analytic on the unit disk \(D = \{ z : |z| < 1 \} \), then there exists an \(a \in D \), \(a \neq 0 \) such that \(|f'(a)| \geq |f(0)| \).
 (c) Every analytic function \(f(z) \) on a domain \(D \) has a power series expansion \(f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k \) for each \(z_0 \in D \) with a strictly positive radius of convergence.

2. [25 points]
 (a) Given four distinct points \(z_1, z_2, z_3, z_4 \) in \(\mathbb{C} \), their cross ratio, which is denoted \((z_1, z_2, z_3, z_4) \), is defined to be the image of \(z_4 \) under the fractional linear transformation that sends \(z_1, z_2, z_3 \) to \(\infty, 0, 1 \), respectively. Prove that if \(\phi \) is a fractional linear transformation then \((\phi(z_1), \phi(z_2), \phi(z_3), \phi(z_4)) = (z_1, z_2, z_3, z_4) \).
 (b) Prove that the four distinct points \(z_1, z_2, z_3, z_4 \) of \(\mathbb{C} \) lie on a (generalized) circle if and only if the cross ratio \((z_1, z_2, z_3, z_4) \) is real.
 (c) Compute the cross ratio \((2, -2, 2i, z) \) and use (b) to decide whether the points \(\hat{z}_{1,2} = 1 \pm i \sqrt{3} \) and \(\hat{z}_{3,4} = 2 \pm i \) lie on the circle \(|z| = 2 \).

3. [25 points]
 (a) Let \(H = \{ z \in \mathbb{C} \mid \text{Im} \, z > 0 \} \) be the upper half-plane. Let \(f : H \to \mathbb{C} \) be holomorphic and satisfy \(|f(z)| \leq 1 \) for \(z \in H \) and \(f(i) = 0 \). Show that \(|f(z)| \leq \left| \frac{z-i}{z+i} \right| \) for \(z \in H \).
 (b) Let \(\Omega \) be a bounded region, \(a \in \Omega \) and \(f : \Omega \to \Omega \) be a holomorphic map such that \(f(a) = a \). Show that \(|f'(a)| \leq 1 \).

4. [25 points] Use the calculus of residues to evaluate the integral
 \[
 \int_{-\infty}^{\infty} \frac{x^2 + 1}{(x^2 + 4)(x^2 + 9)} \, dx .
 \]
 Verify all steps of the calculation.
Problem 1 (25 points).

(a) (5 points) State the fundamental theorem of finitely-generated abelian groups.

(b) (20 points) Determine the structure (in the form of your statement of part (a)) of the finitely-generated abelian group generated by three elements x, y, z subject to the relations

\begin{align*}
2x + 4y + 2z &= 0 \\
12x + 6y + 4z &= 0 \\
8x + 3y + 3z &= 0.
\end{align*}
Problem 2 (25 points). Let $\mathbb{Z}(G)$ be the group ring of G over the integers (that is, the ring of formal linear combinations of elements of G, with coefficients in \mathbb{Z}). Let I be a right ideal of $\mathbb{Z}(G)$ and define

$$G_I = \{ g \in G \mid (1 - g) \in I \}.$$

Show that G_I is a subgroup of G, and that it is normal in G if I is a 2-sided ideal.
Problem 3 (25 points). Show that if H is a normal subgroup of G, then the center $Z(H)$ of H is a normal subgroup of G. Give an example of H and G such that H is a normal subgroup of G but $Z(H)$ is not a subgroup of $Z(G)$.
Problem 4 (25 points).

(a) (5 points) Let G be a finite group acting on a finite set X. State Burnside’s lemma for the number of orbits $|X/G|$.

(b) (20 points) Let G be a finite group and let $g \in G$ and $h \in G$ be two randomly chosen elements (with replacement). Show that the probability that g and h commute is $k/|G|$, where k is the number of conjugacy classes in G. (Hint: use part (a).)
Bonus (10 points). Let p and q be primes with $p > q$ and $q \nmid (p - 1)$. Show that all groups of order pq are cyclic.
Problem 1) (15 pts) Find the principal matrix solution at $t_0 = 0$ for the following system.

\[
\begin{align*}
 x_1' &= 2x_1 - x_2 \\
 x_2' &= x_1 + 4x_2
\end{align*}
\]
Problem 2) Solve the following initial value problems:

2a) (10 pts) \[8tx' + 12x^2 = -4t \] \[x(1) = 1 \]

2b) (10 pts) \[x' = 3t^2 + 2\sqrt{x-t^3} \] \[x(0) = 4 \]
Problem 3 (15 pts) Find the solution to the following differential equation.

\[t^2x'' + tx' - 4x = \frac{12}{t} \quad x(1) = 1 \quad x'(1) = 2 \]

(Hint: \(x = t^2 \) is a homogeneous solution)
Problem 4) (15 pts) Prove or give a counterexample for the following statement:

Let \(x' = f(t, x) \) with \(x(t_0) = x_0 \). If \(f \in C^1(\mathbb{R}^2, \mathbb{R}) \), then there exists a unique solution \(\phi(t) \) whose domain is \(\mathbb{R} \).

[Here, \(C^1(\mathbb{R}^2, \mathbb{R}) \) represents at least once differentiable functions whose domain is \(\mathbb{R}^2 \).]
Problem 5) (20 pts) Consider the following ODE: \(x' = t - \ln x \)

5a) Discuss the limit of the solution \(x(t) \) when \(t \to \infty \) for a given initial condition \(x(t_0) = x_0 > 0 \).

5b) Is there any solution where \(|x(t)| \to \infty \) in finite time?
Problem 6a) (9 pts) Find the normalized eigenfunctions of the following problem.

\[y'' + \lambda y = 0 \quad y'(0) = 0 \quad y(\pi) = 0 \]

6b) (6 pts) By using part a, find a function \(f(x) \) where the following equation has no solution.

\[y'' + \frac{9}{4}y = f(x) \quad y'(0) = 0 \quad y(\pi) = 0 \]
Qualifying Exam
Math 7329 August 2020
Topological and algebraic methods in nonlinear DEs

QE ID_________________________

Instructions: Please solve the following problems. Work on your own and do not discuss these problems with your classmates or anyone else.

1. Given a matrix
\[
A = \begin{pmatrix}
a & 0 & 0 & b \\
0 & c & d & 0 \\
0 & -d & c & 0 \\
-b & 0 & 0 & a \\
\end{pmatrix}
\]
and a vector \(v = (1, 2, 3, 4)^t\), under which conditions with respect to the parameters \(a, b, c\) and \(d\) does the system
\[
\dot{x} = Ax + \cos^{2020}(2t)v \quad (x \in \mathbb{R}^4)
\]
admit a periodic solution? Justify your answer.

2. Does the system
\[
\begin{align*}
\dot{x} &= 4x^3 + 2xy^2 + 2xz^2 + (3y^2 + 4z^2 + 2020) \cos(2t) \\
\dot{y} &= 2x^2y + 4y^3 + 2yz^2 + (4x^2 + 11z^2) \sin(2t) \\
\dot{z} &= 2x^2z + 2zy^2 + 4z^3 + (8x^2 + 4y^2) \cos(2t)
\end{align*}
\]
admit a periodic solution? Justify your answer.

3. Let \(K_1\) and \(K_2\) be two compact sets in \(\mathbb{R}^2\). Show that there exist \(a, b, c \in \mathbb{R}\) such that:
\[
\mu\{(x, y) \in K_1 : ax + by \geq c\} = \mu\{(x, y) \in K_1 : ax + by \leq c\}
\]
and
\[
\mu\{(x, y) \in K_2 : ax + by \geq c\} = \mu\{(x, y) \in K_2 : ax + by \leq c\}
\]
(here “\(\mu\)” stands for the Lebesgue measure on the plane).

4. Let \(D \subset \mathbb{C}\) be the unit disc. Show that any two continuous paths \(\gamma_1\) and \(\gamma_2\) in \(D\) such that \(\gamma_1\) connects 1 and \(-1\) and \(\gamma_2\) connects \(i\) with \(-i\), must intersect in \(\overline{D}\).

Good luck!
Problem 1 (25 points).
(a) (5 points) State the Havel-Hakami Theorem, giving a condition for a degree sequence to be graphic.

Use the Havel-Hakami Theorem to determine which of the following degree sequences are graphic. If the degree sequence is graphic, draw a graph G with that degree sequence.
(b) (5 points) $d_1 = (3, 3, 3, 3, 2)$

(c) (5 points) $d_2 = (4, 3, 3, 2, 1)$

(d) (5 points) $d_3 = (4, 4, 3, 2, 1)$

(e) (5 points) $d_4 = (2, 2, 2, 1, 1)$
Problem 2 (25 points). Prove that if G is a planar graph, then $v - e + f = 2$, where v is the number of vertices of G, e is the number of edges, and f is the number of faces.
Problem 3 (25 points). Let F_n denote the number of ways to climb n steps using one or two steps at a time.

(a) (10 points) Show that $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$.

(b) (15 points) Show that the ordinary generating function for the sequence $(F_n)_{n=0}^\infty$ is $F(x) = \frac{1}{1-x-x^2}$.
Problem 4 (25 points). Give a combinatorial proof that $\sum_{k=0}^{n} k \binom{n}{k}^2 = n \binom{2n-1}{n-1}$. (Non-combinatorial proofs will only receive partial credit.)
Bonus (10 points). How many binary sequences \((\epsilon_1, \epsilon_2, \ldots, \epsilon_n)\) (with \(\epsilon_i \in \{0, 1\}\)) satisfy
\[\epsilon_1 \leq \epsilon_2 \geq \epsilon_3 \leq \epsilon_4 \geq \epsilon_5 \leq \cdots?\]