The Role of “Live” in Livestreaming Markets: Evidence Using Orthogonal Random Forest

Ziwei Cong, Jia Liu, Puneet Manchanda*

July 4, 2021

Abstract

The common belief about the growing medium of livestreaming is that its value lies in its “live” component. In this paper, we leverage data from a large livestreaming platform to examine this belief. We are able to do this as this platform also allows viewers to purchase the recorded version of the livestream. We summarize the value of livestreaming content by estimating how demand responds to price before, on the day of, and after the livestream. We do this by proposing a generalized Orthogonal Random Forest framework. This framework allows us to estimate heterogeneous treatment effects in the presence of high-dimensional confounders whose relationships with the treatment policy (i.e., price) are complex but partially known. We find significant dynamics in the price elasticity of demand over the temporal distance to the scheduled livestreaming day and after. Specifically, demand gradually becomes less price sensitive over time to the livestreaming day and is inelastic on the livestreaming day. Over the post-livestream period, demand is still sensitive to price, but much less than the pre-livestream period. This indicates that the value of livestreaming persists beyond the live component. Finally, we provide suggestive evidence for the likely mechanisms driving our results. These are quality uncertainty reduction for the patterns pre- and post-livestream and the potential of real-time interaction with the creator on the day of the livestream.

Keywords: Livestreaming, Pricing, Knowledge Goods, Heterogeneous Treatment Effect, Random Forest, Double Machine Learning, Semi-parametric Deep Neural Networks

*Ziwei Cong is a Ph.D. candidate in Marketing at Hong Kong University of Science and Technology. Email: zcong@connect.ust.hk. Jia Liu is Assistant Professor of Marketing, Hong Kong University of Science and Technology. Email: jialiu@ust.hk. Puneet Manchanda is Isadore and Leon Winkelman Professor, Stephen M. Ross School of Business, University of Michigan. Email: pmanchan@umich.edu. The paper is part of the first author's dissertation. The authors would like to thank participants at the 2020 AIML Conference and the 2021 Marketing Science Conference for feedback.

Electronic copy available at: https://ssrn.com/abstract=3878605
1 Introduction

Livestreaming is the practice of streaming online content for consumption in real time. Compared with recorded content, the key benefits of livestreaming are its immediacy, authenticity, and the ability of the audience to interact with the creator or streamer during the stream (Hu et al., 2017; John, 2020; Zhang et al., 2020; Lin et al., 2021). These attributes have led to it being widely adopted in various domains (e.g., gaming, education and e-commerce) in recent years, resulting in strong growth. For instance, Twitch, the leading U.S. livestreaming platform (focused on gaming), has seen over 300% monthly audience growth from 2015 to 2018 (Iqbal, 2021). In addition to e-commerce giants Amazon and Alibaba, many retailers and brands (e.g., Walmart, Macy’s, Avon, LG, Nordstrom, and Petco) have also embraced livestreaming shopping events (Larson, 2021; Wheless, 2021). Currently, China is the dominant market for livestreaming (at $16.3 billion (Statista, 2020)) with the US the next biggest (estimated to be $11 billion by the end of 2021 (Thomas and Palmer, 2021)). Not surprisingly, given the novelty of livestreaming, there is virtually no academic work that examines how consumers value the “live” component of livestreaming (relative to recorded content).

In this paper, we use data from one of the largest livestreaming platforms in China, Zhihu Live, to shed light on how consumers value live and recorded content. We leverage the fact that the platform also makes the recorded version of live content available for purchase at the same price, allowing us to contrast valuation of the content before, on the day of, and after the livestream. We summarize the value of both the live and recorded content via the use of the estimated price elasticity of demand. To the best of our knowledge, our paper is the first attempt to empirically examine consumer valuation of live content over the entire content life-cycle.

Zhihu Live targets creators who want to monetize their expertise or establish their own business via livestreaming. The creators on Zhihu Live typically provide content (denoted as “Live” in the

1The “Creator Economy” is built around highly motivated, creative, and skilled individuals that have started their own brand, business, or community utilizing a digital platform to share their work (Bakhtiar, 2021; Henderson, 2021; The Economist, 2021). We will use the word “creator” and “streamer” interchangeably in this paper.
rest of the paper) on “serious,” i.e., non-entertainment, topics such as history, culture, business, computer algorithms, etc. A Live is usually listed on the market for purchase 2-3 weeks prior to the scheduled live day. During the livestream, the creator gives a one to two hour live talk, interacting only with the customers who paid for the event before it sold out via written, voice, or picture messages in a virtual chat room. After the livestream concludes, its recorded version is available for purchase on Zhihu at the same price, but without the opportunity of creator-audience real-time interaction. Zhihu Live follows the most common livestreaming pay-per-view (PPV) pricing model (which is also used by Facebook, Vimeo, OnlyFans etc.). Under this model, each creator sets a common price for both her/his live and recorded content (with some loose guidance from the platform) with the consumer paying this fixed price one-time.\(^2\)

However, estimating the price elasticity of demand using the rich observational data in this context - where the “product” is a custom, one-off experiential event - is challenging for two major reasons. First, prices are likely to be confounded with a large number of factors (e.g., content quality and creator credibility) in potentially complex and partially known ways. This results in a high-dimensional setting where the number of model parameters could be large relative to the sample size. Second, the computed price elasticity is likely to be heterogeneous, varying both temporally and cross-sectionally. In terms of our research question, the temporal variation (i.e., how it varies relative to the livestreaming day) is particularly important.

In order to address the above challenges, we develop a framework that allows us to estimate the price elasticity of demand non-parametrically in the presence of high-dimensional confounders whose relationships with price are complex but partially known. Specifically, our framework generalizes Orthogonal Random Forest (ORF) (Oprescu et al. (2018)) via the use of Semi-parametric Deep Neural Networks (SDNNs) to estimate the nuisance functions (i.e., functions of all confounding variables). SDNNs are denoted as semi-parametric as they allow partitioning of the confounders into two sets. The first set consists of confounders that are assumed to have a known

\(^2\)In livestreaming, PPV is considered to be a “direct” pricing model mechanism, along with subscriptions, and pay-what-you-want (PWYW) or tipping (Lu et al., 2021). For more on the PWYW model of pricing in livestreaming, we refer the reader to Lu et al. (2021) and Lin et al. (2021). In contrast, some platforms follow an “indirect” pricing model, revenue is generated via ad and/or product placement during the livestream.
relationship with the key treatment and outcome variable (price and demand in our case) while the second set consists of confounders that are assumed to have an (unknown) relationship with the treatment and outcome. The use of SDNNs to estimate the nuisance functions is particularly suited to marketing and economics settings, e.g., when panel data are used. This is because the method allows for both “fixed effects” while accommodating flexible non-linear combinations of the remaining confounders.

Our estimation results show considerable dynamics in price sensitivity relative to the scheduled live day. Specifically, demand gradually becomes less price sensitive approaching the livestreaming day and is inelastic on the livestreaming day; throughout post-stream period, demand becomes price sensitive again, but on average is less sensitive than in the pre-livestream period. These patterns suggest that while the live part of the content is valuable (as can be seen by the inelastic demand on the day of live), there is considerable value in the content that is not centered in its live attribute. We then provide suggestive evidence for the mechanisms that drive these results via a series of analyses. First, we attribute the inelastic demand on the scheduled livestreaming day to the availability of immediate real-time interaction with the creator. Second, we have suggestive evidence for quality uncertainty reduction that can explain the reduced price-sensitivity of post-stream demand than pre-stream demand. It turns out that consumers are much better at assessing the quality of the content after the event, leading to an on average, lower price sensitivity for the recorded (non-live) content.

This paper makes several contributions. First, it is one of the early studies investigating the growing phenomenon of livestreaming, focusing on how much and why consumers value live and recorded content. Second, our finding that livestreaming content also has value beyond the live part is contrary to conventional belief that livestreaming content has no residual value once the event is over (Gomes, 2018; John, 2020). To the best of our knowledge, this has not been shown before. Third, these results are likely to be valuable to both streamers/creators and platforms in the sense that they encourage them to provide both live and recorded content to enhance revenue and provide value to consumers. In addition, marketing efforts to reduce uncertainty about upcom-
ing events could also be beneficial for all parties (streamers, platform, consumers). Finally, our methodological approach shows how ORF can be generalized via the use of SDNNs for nuisance estimation. We believe that this framework is likely to be very useful in real-world marketing and economics settings, especially with high-dimensional covariates that impact the treatment in complex and partially unknown ways.

The rest of paper is organized as follows. Section 2 describes our empirical context and data. Section 3 conducts descriptive regression analysis. In section 4, we introduce the model setup, ORF algorithm, and how we allow SDNNs for nuisance estimation. In Section 5, we apply our proposed generalized ORF to obtain our main findings on the temporal dynamics in price sensitivity. In Section 6, we explore reasons that explain the main findings. Section 7 concludes with a discussion.

2 Research Context and Data

2.1 Zhihu Live

Our context is the Chinese platform Zhihu Live, which is an livestreaming service launched by Zhihu on May 14, 2016. Zhihu is the earliest and largest knowledge sharing platform in China, starting as a Q&A community (similar to Quora.com) in 2011. By December 2020, the platform had 43.1 million cumulative content creators, who had contributed 315.3 million questions and answers (Hu et al., 2017). The company went public in the U.S. in March 2021. Each user on Zhihu has a profile page, which contains some personal information provided by the user and a summary of the user’s past contribution activities along with all the contributed content. Please refer to Figures A1 and A2 in the Appendix A for illustrative examples.

Zhihu Live targets creators who want to monetize their expertise via livestreaming content to a paying audience. By December 2020, Zhihu Live had nearly 10,000 cumulative paid Lives, with

3Users on Zhihu can voluntarily seek and share information (such as knowledge, expertise, and customized solutions) in a variety of domains mainly through posting questions and answers. A typical question consists of a title and several topic tags. A question usually receives multiple answers, which by default are ranked by the total number of votes each answer has received. In addition to content-related activities, users can organically follow any other users.
5,000 creators, 6 million paying users, resulting in a revenue of approximately $12 million in 2020 (Fergus, 2020; CIW Team, 2021). To become a Live creator, a user needs to provide Zhihu with basic personal information, such as real name, educational background, and the proof of expertise in certain area(s). Upon approval, the user is allowed to open his/her own Lives.

![Figure 1: Life-Cycle of a Live](image)

Figure 1 illustrates the life-cycle of a typical Live on Zhihu. A creator first decides the key product features, including full price (under loose guidance from the platform), topic, content, starting time, and seat limit (the maximum number of consumers who are allowed to interact with the creators during the livestream). During our study period, the Live revenue is split between the creator and the platform 70:30. Once Zhihu approves of the event, the Live is listed on the platform for purchase, typically 2-3 weeks prior to the scheduled starting time. During this period, consumers become aware of upcoming Lives through the Live market webpage, which has a section that displays news about upcoming Lives. Note that once a Live enters the market, the creator can no longer change its full price, which means that strategic price adjustment by the creator over time in reaction to realized demand conditions is not allowed.\(^4\)

During the livestream, the creator will give a 1-2 hour live talk on the prepared content. The

\(^4\)In a few cases, we observe that the platform lowers the price, by running platform-level promotions. These are typically run over weekends and public holidays. We discuss this in detail in Section 2.2. In addition to this, Zhihu seldom use other (non-price) marketing mix elements to market Live events, except for the use of in-site banner advertising for Lives opened by celebrities.
creator can interact with his/her paying audience via text, voice, or picture messages in a virtual chat room. An illustrative example is provided in Figure A3 of Appendix A. Note that only consumers who purchase the Live before seats sell out can raise questions and leave comments during the livestream. Other consumers can still view the event in real-time but cannot interact with the creator. After the livestream concludes, consumers are allowed to provide feedback, i.e., a rating on a 5-point scale along with text comments. The recording of the livestream is then made available for purchase at the same price, but without the opportunity of creator-consumer real-time interaction. Consumers can explore all recorded Lives via a subpage of the Live market website. The fact that the platform also makes live content available in recorded form at the same price allows us to contrast price elasticity of demand before, on the day of, and after the livestream.

2.2 Data

Zhihu provided us two main data sets for our study purpose. The first comprises transaction-level records on the platform from May 2016 to June 2017, involving 1,519 creators and 3,491 unique Lives. Each transaction record includes buyer ID, purchase time, unit price paid, and the characteristics of the purchased Live (such as creator ID, topical category, full price, seat limit, posting time, starting time, talk duration, and rating if available). The second data set contains complete and detailed historical activities of all individual users in the free Q&A community i.e., the main Zhihu platform. We observe user profile, registration time, content (i.e., question, answer, and article) contribution, content (i.e., topic and question) subscription, and social activities (i.e., following others or being followed). We also know different types of individual feedback (e.g., upvote, downvote, thank, unhelpful) that a user received for each answer he/she has contributed. These observed creator characteristics are related to a creator’s reputation in the free Q&A community. This reputation is expected to be an important factor for setting the full price of the creator’s Live and also for influencing the realized demand for the Live (Shapiro, 1982; Varian, 1999; Wang and Nicolau, 2017).

Our empirical study focuses on 2,705 Lives that were launched from November 2016 to June
2017. During this period, the Zhihu Live platform was relatively stable with no major changes in the operating policy. When estimating price elasticity of demand over Live life-cycle, we aggregate individual transactions to obtain the daily unit sales of each Live. As about 90% of total sales transactions by volume in the Zhihu Live market occur from the day of Live listing to 30 days post Live airing, we restrict our analysis to this window. This results in a total of 125,028 Live-day observations.

2.3 Covariates

The internal data provided by Zhihu allows us to observe rich characteristics of all parties (creators, products, consumers, platform) that may affect full price and realized demand. In total, there are 1,700 possible covariates, among which 1,458 variables are fixed effects (for creator, Live category, and seasonality) and the remaining are observed characteristics. We classify these covariates into four categories and summarize them in Table 1.

The first category is about Live characteristics, which are expected to account for a substantial proportion of demand signals used for pricing decisions (Gibbs et al., 2018). The second category is about creator characteristics summarized by creator past activities on the Live market and the Q&A platform. These online activities can capture a creator’s reputation that is expected to be an important factor for setting the full price of a Live and for influencing the realized demand (Shapiro, 1982; Varian, 1999; Wang and Nicolau, 2017). The third category is about Live market conditions, including the growth of the entire Live market, category-level competition, and few changes in market design. These are likely to influence demand and creators’ pricing decisions. The last category is about Q&A platform conditions, such as growth in user base and content contribution. These may potentially influence the Live market.

All creator characteristics (except for the profile information) is computed by the starting time of each Live hosted by the creator.
Table 1: Full List of Control Variables

<table>
<thead>
<tr>
<th>Category</th>
<th>Variables</th>
</tr>
</thead>
</table>
| **Live-Specific Characteristics** | - Fixed variables: Creator indicators; Topic indicators; Whether the Live belongs to “hard” topics; The num. of days from listing to livestream; Seats limit; Rating (if available); Whether the Live is advertised by the platform; Whether Live is held on public holiday; Live week indicators; Live day-of-week indicators
- Time-varying variables: The cum. sales of a Live; Whether seats are still available; Percentage discount; Dummy indicators for day-distance relative to live streaming |
| **Creator-Specific Characteristics** | - Content contribution in free Q&A community: The cum. num. of answers/questions/articles
- Feedback from the community: The cum. num. of up-votes/down-votes/thank/unhelpful on own posted answers
- Social network: The cum. num. of followers/followees
- Lifetime: The num. of days since registered Zhihu
- Profile: Whether is a off-line celebrity; Whether is invited to open Live; Whether is an “Excellent Contributor” certified by Zhihu
- Past Live experience: The cum. num. of hosted Lives; The average sales of past Lives; The average rating of past Lives; The average num. of reviews of past Lives; The average num. of “likes” of past Lives; The num. of days since the first Live |
| **Market-Level Factors** | - Market size/growth: The num. of days since launching Zhihu Live; The cum. num. of (unique) consumers/creators/Lives on the market
- Competition: The cum. num. of available Lives from the same topic; The num. of running Lives from the same topic on the same day; The average price of available Lives from the same topic; The average price of running Lives from the same topic on the same day; The average follower size of other Live’ creators from the same topic; The average follower size of other running Lives’ creators from the same topic on the same day
- Policy change: Whether Live rating function was launched (November 02, 2016); Whether detailed reviews was displayed to public (April 24, 2017) |
| **Platform-Level Factors** | - User base: The cum. num. of users; The daily num. of newly registered users
- Voluntary content contribution: The cum. num. of questions/answers; The daily number of newly posted questions/answers
- Seasonality: Calendar (transaction) week indicators; Calendar (transaction) day-of-week indicators |
3 Descriptive Analysis

In this section, we present the key summary statistics of creator characteristics and variations in Live price and demand. We then use basic regression analysis to illustrate the factors that may influence prices set by creators as well as demand. Note that due to its endogeneity concerns, the regression analysis here is best interpreted as a precursor to the ORF estimation.

3.1 Summary Statistics

Table 2 reports some descriptive statistics of the 1,330 unique creators observed in our data. The large standard deviations of these variables suggest that activity levels in the Q&A community vary widely across creators.\(^6\) Table 3 presents the summary statistics of all the Lives hosted by these creators over our study period. An average Live is priced at 22 RMB (about $3), allows 498 seats, and is listed on the market for sales 17 days prior to actual airing. While the standard deviation of “Seats Limit” seem to be quite large in Table 3, we find that the majority of the Lives set it to be 500. Hence, there is very limited variation in this variable.

Prices vary widely across Lives, ranging from 0.99 RMB to 399 RMB, as shown in Figure 2. In addition, we find that there exists some within-Live price variation across transactions for about 10% of Lives due to platform promotions. However, virtually all these promotions typically applied over the duration of the Live, making them equivalent to a permanent price cut. Therefore, when estimating price elasticity of demand at each target feature, our identification primarily leverages across-Live price variation because within-Live price variation is close to zero.

The average total sales (seats) per Live by the end of our study period is 639. We find that 72% of sales transactions occurred prior to the airing of the Live. Thus, a surprisingly high 28% of demand is realized after the livestream. Figure 3 reports the average daily sales across all Lives, along with the 95% confidence intervals. We can see that it gradually increases throughout the

\(^6\)Because 619 creators held more than one Live over our study period, we obtain the characteristics for each creator at the time of each of his/her Live, and then compute the average across Lives hosted by the same creator.
Table 2: Creator Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std.</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
<td>V3</td>
</tr>
<tr>
<td>V1 Num. Lives</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>V2 Live Market Lifetime (days)</td>
<td>35</td>
<td>62</td>
<td>0.637</td>
</tr>
<tr>
<td>V3 Q&A Platform Lifetime (days)</td>
<td>976</td>
<td>671</td>
<td>0.144</td>
</tr>
<tr>
<td>V4 Num. Followers</td>
<td>18,513</td>
<td>64302</td>
<td>0.255</td>
</tr>
<tr>
<td>V5 Num. Followees</td>
<td>140</td>
<td>345</td>
<td>0.090</td>
</tr>
<tr>
<td>V6 Num. Articles</td>
<td>19</td>
<td>58</td>
<td>0.331</td>
</tr>
<tr>
<td>V7 Num. Questions</td>
<td>9</td>
<td>44</td>
<td>0.100</td>
</tr>
<tr>
<td>V8 Num. Answers</td>
<td>171</td>
<td>392</td>
<td>0.180</td>
</tr>
<tr>
<td>V9 Num. Upvotes per Ans</td>
<td>148</td>
<td>476</td>
<td>0.088</td>
</tr>
<tr>
<td>V10 Num. Downvotes per Ans</td>
<td>4</td>
<td>11</td>
<td>0.120</td>
</tr>
<tr>
<td>V11 Num. Thanks per Ans</td>
<td>45</td>
<td>175</td>
<td>0.087</td>
</tr>
<tr>
<td>V12 Num. Unhelpfuls per Ans</td>
<td>5</td>
<td>16</td>
<td>0.126</td>
</tr>
<tr>
<td>V13 Excellent Contributor</td>
<td>0.147</td>
<td>0.354</td>
<td>0.322</td>
</tr>
<tr>
<td>V14 Offline celebrity</td>
<td>0.028</td>
<td>0.165</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Note: The last two rows are dummy indicators for whether a creator is recognized as “excellent contributor” by the platform, and for whether being a offline celebrity (which are identified manually based on our own research). The correlations that are in italic format are statistically significant at $p < 0.1$.

Electronic copy available at: https://ssrn.com/abstract=3878605
Table 3: Live Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std.</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 Num. Days before Livestream</td>
<td>17</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2 Seats Limit</td>
<td>498</td>
<td>139</td>
<td>0.074</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V3 Price</td>
<td>22</td>
<td>22</td>
<td>0.123</td>
<td>-0.025</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V4 Total Sales</td>
<td>639</td>
<td>2,311</td>
<td>0.004</td>
<td>-0.021</td>
<td>0.018</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V5 Pre-livestream Sales</td>
<td>499</td>
<td>2,084</td>
<td>0.007</td>
<td>-0.018</td>
<td>0.035</td>
<td>0.990</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V6 30-day Post-livestream Sales</td>
<td>75</td>
<td>195</td>
<td>-0.015</td>
<td>-0.017</td>
<td>-0.012</td>
<td>0.557</td>
<td>0.448</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The correlations in italics are statistically significant at $p < 0.1$.

pre-livestream period, peaks at the day of live (with about 60 tickets sold per day), and drops immediately after the livestream. This pattern suggests a large association between demand and temporal distance to the livestreaming day.

![Figure 2: Distribution of Price](https://ssrn.com/abstract=3878605)

Recall that when the cumulative sales of a Live reach the seat limit, buyers will no longer have the opportunity to interact with the creator during the livestream. The cumulative demand of a Live is public information, while the seat limit is not observable. However, a buyer is informed about
whether a seat is available during her purchase process. Thus, we expect that seat availability will
have a significant impact on demand. In our data, there are 583 Lives whose seats were filled up
before the scheduled livestreaming day. Figure 4 shows the average hourly sales of these Lives
from 5-hour before to 5-hour after seats were sold-out, along with the 95% confidence intervals.
One can see that the hourly sales drops immediately after the seats are filled up, confirming that the
opportunity to interact with creator during livestream is valuable to consumers. We will provide
more details on the value of live interaction in Section 5.

3.2 Descriptive Price Regression

We adopt a cross-sectional regression analysis to understand the factors that may influence the
price set by the creator. Specifically, we regress the log-transformed price p_{ij} of Live j hosted by
creator i on a subset of the covariates listed in Table 1.\(^7\) All the continuous independent variables
are standardized and hence their coefficients are comparable. The estimation results are presented

\(^7\)We do not use covariates that vary by calendar day in this cross-sectional regression. We also do not control for creator
and calendar day fixed effects, as this introduces too many variables for a regression with merely 2,705 observations.
Figure 4: Average Hourly Sales over Time to Seats-Sell-Out

Note: This figure is based on 538 Lives whose seats are sold out before the scheduled live day. The shaded region depicts 95% confidence interval across all selected Lives at each temporal hour distance.

In Table 4, where the full model is built up gradually.

In the full model (Model (4)), the estimated coefficients for Live-specific characteristics suggest that creators tend to set a lower price if the Live is to be aired on holidays ($p < 0.1$) or has fewer days on the market prior to airing ($p < 0.01$). The number of past Lives held and the average past Live rating is positively associated with the price of the current Live ($p < 0.01$), suggesting that more experienced or established creators tend to set higher prices. Similarly, we find that creator content contribution level and follower size in the Q&A platform are also positively associated with price. Lastly and not surprisingly, offline celebrities or invited creators are more likely to set higher price. Taken together, these findings suggest that creators consider timing and their experience and reputation in both the paid market and the free Q&A platform. This can be further confirmed by the improvement in R^2 across the different specifications. We can see that Live specific features and seasonality together accounts for about 8.5% of the variation in price across Lives (Model (1)), while including topic fixed effects accounts for another 3.7% of the variation (Model (2)).
Table 4: Regression of Log Seller’s Full Price

<table>
<thead>
<tr>
<th>Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live-Specific Features and Seasonality on the Livestreaming Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seats Limit $-0.004 (0.011)$</td>
<td>$-0.002 (0.011)$</td>
<td>$-0.001 (0.011)$</td>
<td>$-0.001 (0.011)$</td>
<td></td>
</tr>
<tr>
<td>Days before Live $0.096 (0.011)^{***}$</td>
<td>$0.099 (0.011)^{***}$</td>
<td>$0.065 (0.011)^{***}$</td>
<td>$0.070 (0.011)^{***}$</td>
<td></td>
</tr>
<tr>
<td>Advertised $-0.087 (0.041)^{**}$</td>
<td>$-0.066 (0.040)$</td>
<td>$-0.128 (0.042)^{***}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic Fixed Effects Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Holiday $-0.130 (0.061)^{**}$</td>
<td>$-0.130 (0.061)^{**}$</td>
<td>$-0.134 (0.059)^{**}$</td>
<td>$-0.121 (0.058)^{**}$</td>
<td></td>
</tr>
<tr>
<td>Live Day of Week Fixed Effects Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Live Week Fixed Effects Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Creator Past Experience and Reputation in Live Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live Market Lifetime $-0.049 (0.020)^{**}$</td>
<td>$-0.033 (0.021)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invited Creator $0.112 (0.050)^{**}$</td>
<td>$0.134 (0.050)^{***}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Past Lives $0.131 (0.017)^{***}$</td>
<td>$0.075 (0.018)^{***}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Past Pre-Livestream Demand $-0.008 (0.011)$</td>
<td>$-0.019 (0.011)^*$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Past Live Rating $0.034 (0.014)^{**}$</td>
<td>$0.046 (0.014)^{***}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creator Experience and Reputation in Q&A Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q&A Platform Lifetime $-0.015 (0.012)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offline Celebrity $0.379 (0.077)^{***}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent Contributor $0.023 (0.033)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Followers $0.036 (0.016)^{**}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Followees $-0.016 (0.012)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Articles $0.061 (0.016)^{***}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Questions $0.039 (0.017)^{**}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Answers $-0.029 (0.015)^*$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Upvotes per Ans $-0.063 (0.031)^{**}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Downvotes per Ans $0.028 (0.023)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thank Num. per Ans $0.059 (0.038)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Unhelpfuls per Ans $-0.028 (0.044)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Obs. $2,705$</td>
<td>$2,705$</td>
<td>$2,705$</td>
<td>$2,705$</td>
<td></td>
</tr>
<tr>
<td>R^2 0.085</td>
<td>0.122</td>
<td>0.164</td>
<td>0.194</td>
<td></td>
</tr>
</tbody>
</table>

Note: Creator characteristics on the Live market and the Q&A community is computed by the starting time of each Live held by the creator (except for InvitedCreator, Celebrity and ExcellentContributor, which are fixed over time). $^{***} p < 0.01$, $^{**} p < 0.05$, $^* p < 0.1$.

Electronic copy available at: https://ssrn.com/abstract=3878605
Creator-specific features together account for about 7.2% of the variation (Model (3) and (4)).

Note that the full model explains only 19.4% of the price variation. This is significantly lower than the existing studies, e.g., 80% for cruise industry data (Joo et al. (2020)) and 40-50% for Airbnb data (Li et al. (2016), Gibbs et al. (2018)). This suggests that there is a potentially complex set of relationships between price and large number of observed covariates in our context, which requires the use of more flexible functional form to model these relationships.

3.3 Descriptive Demand Regression

We now consider a cross-section analysis of total demand in the pre-livestream and post-livestream periods, respectively. Our dependent variable is the log-transformed total sales of a Live j hosted by creator i from the time it was listed on the market to 30 days after it was aired. The independent variables include the log-transformed full price of Live j and a subset of covariates listed in Table 1. So the coefficient of price can be interpreted as the elasticity, though it is most likely biased as this regression does not control for all confounders. All other continuous independent variables are standardized.

The results for the pre-livestream (Model (1)) and post-livestream (Model (2)) demand are shown in Table 5. For post-livestream demand, we additionally control for rating score and log-transformed total pre-livestream demand. We highlight two key findings. First, we find that the estimated pre-livestream price elasticity is significantly negative ($p < 0.01$), whereas the post-livestream price elasticity is insignificant. This suggests that post-livestream demand is less price-elastic than pre-livesream demand. Second, as expected, we find that the creator’s past experience and reputation appear to have a bigger impact on the pre-livestream demand than on the post-period demand.

8 We also replicate the demand regression using Live-day panel data and the results are consistent with cross-section analysis. Details are available from the authors upon request.
Table 5: Regression of Log Aggregate Demand

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>Log Pre-Livestream Demand</th>
<th>Log Post-Livestream Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Live-Specific Features and Seasonality on Live Session Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Price</td>
<td>−0.718 (0.043)**</td>
<td>−0.039 (0.031)</td>
</tr>
<tr>
<td>Seats Limit</td>
<td>−0.007 (0.023)</td>
<td>−0.029 (0.016)*</td>
</tr>
<tr>
<td>Days before Live</td>
<td>0.200 (0.025)**</td>
<td>−0.134 (0.017)**</td>
</tr>
<tr>
<td>Advertised</td>
<td>1.237 (0.093)**</td>
<td>−0.396 (0.066)**</td>
</tr>
<tr>
<td>Topic Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Log Pre-Livestream Demand</td>
<td>Yes</td>
<td>0.805 (0.014)**</td>
</tr>
<tr>
<td>Rating</td>
<td>0.167 (0.027)**</td>
<td>−0.105 (0.088)</td>
</tr>
<tr>
<td>Holiday</td>
<td>−0.366 (0.128)**</td>
<td>−0.105 (0.088)</td>
</tr>
<tr>
<td>Live Day of Week Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Live Week Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Creator Past Experience and Reputation in Live Market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live Market Lifetime</td>
<td>0.051 (0.046)</td>
<td>−0.106 (0.032)**</td>
</tr>
<tr>
<td>Invited Creator</td>
<td>0.108 (0.110)</td>
<td>0.117 (0.075)</td>
</tr>
<tr>
<td>Num. Past Lives</td>
<td>−0.256 (0.039)**</td>
<td>0.081 (0.027)**</td>
</tr>
<tr>
<td>Average Past Pre-Livestream Demand</td>
<td>0.118 (0.025)**</td>
<td>−0.011 (0.017)</td>
</tr>
<tr>
<td>Average Past Live Rating</td>
<td>0.066 (0.014)**</td>
<td>0.027 (0.021)</td>
</tr>
<tr>
<td>Creator Experience and Reputation in Q&A Community</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q&A Platform Lifetime</td>
<td>0.079 (0.027)**</td>
<td>0.043 (0.019)**</td>
</tr>
<tr>
<td>Celebrity</td>
<td>0.859 (0.168)**</td>
<td>−0.459 (0.116)**</td>
</tr>
<tr>
<td>Excellent Contributor</td>
<td>−0.104 (0.072)</td>
<td>−0.077 (0.049)</td>
</tr>
<tr>
<td>Num. Followers</td>
<td>0.183 (0.035)**</td>
<td>0.016 (0.024)</td>
</tr>
<tr>
<td>Num. Followees</td>
<td>0.024 (0.025)</td>
<td>−0.010 (0.017)</td>
</tr>
<tr>
<td>Num. Articles</td>
<td>0.129 (0.035)**</td>
<td>−0.006 (0.024)</td>
</tr>
<tr>
<td>Num. Questions</td>
<td>−0.200 (0.036)**</td>
<td>0.014 (0.025)</td>
</tr>
<tr>
<td>Num. Answers</td>
<td>0.062 (0.032)*</td>
<td>−0.019 (0.022)</td>
</tr>
<tr>
<td>Num. Upvotes per Ans</td>
<td>0.247 (0.068)**</td>
<td>0.207 (0.047)**</td>
</tr>
<tr>
<td>Num. Downvotes per Ans</td>
<td>0.153 (0.051)**</td>
<td>0.027 (0.035)</td>
</tr>
<tr>
<td>Num. Thanks per Ans</td>
<td>0.033 (0.084)</td>
<td>−0.039 (0.057)</td>
</tr>
<tr>
<td>Num. Unhelpful per Ans</td>
<td>−0.277 (0.097)**</td>
<td>−0.138 (0.067)**</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>2,705</td>
<td>2,705</td>
</tr>
<tr>
<td>R^2</td>
<td>0.483</td>
<td>0.716</td>
</tr>
</tbody>
</table>

Note: Creator characteristics on the Live market and the Q&A community is computed by the starting time of each Live held by the creator (except for InvitedCreator, Celebrity and ExcellentContributor, which are fixed over time). ***$p < 0.01$, **$p < 0.05$, *$p < 0.1$.

4 Modeling Approach

While regression analysis above provides us some useful descriptive insights, there are two challenges arise in our context that are not well addressed by typical regression approaches. First,
price and sales are confounded with a large number of covariates in complex and partially known ways, which means the number of covariates and potential variables formed by different ways of interacting and transforming the covariates could be large relative to sample size. Second, price elasticity of demand for Live is likely to be heterogeneous, varying both temporally and cross-sectionally. In terms of our research question, the temporal variation (how it varies relative to the day of livestream) is particularly important. We therefore turn to the ORF analysis to estimate the causal impact of price on Live demand. We will first describe the general model setup and then the ORF approach.

4.1 The General Problem

Let \(Y_{it} \in \mathcal{R} \) represents the daily sales for each Live as a function of \(T_{it} \), the treatment/policy of interest, i.e., price. Given \(N \) observations \(D = \{Z_{it} = (Y_{it}, T_{it}, W_{it}, X_{it}) \} \) drawn i.i.d. from some underlying distribution where \(W_{it} \in \mathcal{R}^p \) represents a multitude of control/confounding variables, and \(X_{it} \in \mathcal{R}^d \) is the feature vector that captures the heterogeneity in the estimated price elasticity. In terms of our research question, the temporal distance relative to the scheduled live day is the key target feature in our main analysis.

The outcome and treatment are assumed to follow a general specification as in Oprescu et al. (2018):

\[
Y_{it} = \theta_0(X_{it})T_i + f_0(X_{it}, W_{it}) + \epsilon_{it}
\]

\[
T_{it} = g_0(X_{it}, W_{it}) + \eta_{it}
\]

where \(\epsilon_{it} \) and \(\eta_{it} \) represent the unobserved noise such that \(\mathbb{E}[\epsilon_{it} | T_{it}, X_{it}, W_{it}] = 0 \) and \(\mathbb{E}[\eta_{it} | X_{it}, W_{it}] = 0 \), and \(\theta_0 \) represents the treatment effect function. Note that the full set of confounding factors consists of \(W \) and \(X \). We differentiate between the target feature and other controls using notation \(X \) as we are interested in how treatment effect evolves along the target feature \(X \). The second equation keeps track of the confounding, namely the dependence of the treatment variable on controls. That is, the confounding factors affect the treatment variable \(T \) via the nuisance function \(g_0 \) and influence the outcome \(Y \) via the nuisance function \(f_0 \) (Chernozhukov et al., 2018). Our
goal is to estimate the conditional average treatment effect (CATE) $\theta_0(x)$ (conditioned on targeted feature x).

4.2 Methodological Background

We now briefly review two streams of research, in the intersection of causal inference and machine learning, that have been proposed to estimate (heterogeneous) treatment effects with observational data. The first is a two-stage estimation method, double machine learning (DML), introduced in Chernozhukov et al. (2017, 2018). DML first orthogonalizes out the effect of high-dimensional confounding factors using standard machine learning algorithms, e.g., lasso, deep neural networks (DNNs) or random forests. Then, it estimates the effect of the lower dimensional treatment variable, typically parametrically, by running a low-dimensional linear regression between the residualized treatment and residualized outcome. A challenge with this approach is that it handles heterogeneity in the treatment effect in a fairly limited manner, typically via pre-specified parametric distributions (e.g., Chernozhukov et al., 2017).

The second builds on random forests to estimate causal heterogeneous treatment effects. The most prevalent algorithm is the Generalized Random Forest (GRF) proposed by Athey et al. (2019). GRF assigns each observation a similarity weight derived from the fraction of trees in which an observation appears in the same leaf as the target feature point. It then solves the local estimation equation using the weighted set of “neighbors” at the particular value of target feature. GRF (and related methods) allow for fully flexible non-parametric estimation of heterogeneity in the treatment effect (Athey and Imbens, 2016; Wager and Athey, 2018; Athey et al., 2019). However, these methods tend to perform poorly in the presence of high-dimensional or “highly complex” controls arising from the required regularization bias - see Chernozhukov et al. (2018) for details.

Orthogonal Random Forest (ORF) leverages the benefits of both DML and GRF. It allows non-parametric estimation of the target parameter while permitting more complex nuisance functions with high-dimensional parameterizations (Oprescu et al., 2018). At a high level, ORF incorporates DML into GRF by orthogonalizing the effect from high-dimensional controls via (local) two-stage
estimation. To create an orthogonal moment for identifying \(\theta_0(x) \), ORF follows the residualization approach similar to Chernozhukov et al. (2018). For the problem introduced in Section 4.1, we define a function \(q_0(X,W) = E[Y|X,W] \), and consider the residuals \(\tilde{Y} = Y - q_0(X,W) \) and \(\tilde{T} = T - g_0(X,W) = \eta \). Then, one can simplify the equation as \(\tilde{Y} = \theta_0(X)\tilde{T} + \varepsilon \), which leads to \(E[\tilde{Y}|X,\tilde{T}] = \theta_0(X)\tilde{T} \). This relationship suggests that one can obtain an estimate of \(\theta_0(x) \) by regressing \(\tilde{Y} \) on \(\tilde{T} \) locally around \(X = x \). ORF achieves such an estimation, following the approach of GRF (Athey et al., 2019). Specifically, using a forest-based kernel learner, ORF first assigns a set of similarity weights between each sample and the test point \(x \), and then computes \(\hat{\theta} \) via kernel regression with the set of weights. ORF estimates are shown to be asymptotically normal and hence have theoretical properties that render bootstrap based confidence intervals asymptotically valid. We summarize all the essential steps of the ORF algorithm into pseudo code in Appendix B, along with a detailed explanation.

The key causal identification requirement underlying all these methods (DML, GRF and ORF) is the unconfoundedness assumption. This states that all the variables (often called covariates) affecting both the treatment \(T \) and the outcome \(Y \) are observed and can be controlled for. This means all the confounding variables must be known and be included in \((X,W) \) in the Equation System (1). This further suggests that the specification of the nuisance function (e.g., \(g_0 \) and \(f_0 \) in the Equation System (1)) in these methods are very important in making sure all the confounding factors are properly controlled for. In the conventional ORF, the nuisance function is estimated using lasso. This maintains interpretability but relies on linearity of the functional form. In contrast, purely nonparametric methods (e.g., random forests and/or DNNs) could be used, but while those could provide better fit, they compromise interpretability.

4.3 Extending ORF Using SDNNs

The Zhihu Live context offers us an ideal setting to conduct causal estimation using ORF. Having access to Zhihu’s internal data sets enables us to observe rich characteristics of all parties (creators, products, consumers, platform) that may affect full price and realized demand. This helps us to

Electronic copy available at: https://ssrn.com/abstract=3878605
get as close as possible to the unconfoundedness assumption for causal identification. At the same time, price and sales may be confounded with many covariates, as shown in Table 1, resulting in a large number of possible control variables formed by different ways of interacting and transforming the covariates and hence the curse-of-dimensionality. In addition, these control variables could affect the treatment and outcomes in complex and partially known ways. For example, the fixed effects of creator, Live category, and seasonality are typically assumed to have linear relationships with treatment/outcome according to econometric convention, while other covariates that capture creator, Live, market, and platform characteristics are likely to have unknown functional forms.

Figure 5: Panel Data Neural Network Model

Note: Nonlinear component will enter the model through input1 and the linear component (e.g., the vector of creator fixed effects) will enter through input2.

Such a research setting motivates us to propose a semi-parametric approach, the SDNNs, to specify the nuisance function. SDNNs combine a parametric form for some known covariates (usually based on prior knowledge about data-generating process or standard econometric techniques) with flexible nonparametric forms for the reminder of the covariates. The basic idea of SDNNs is illustrated by a network diagram in Figure 5. SDNNs allow partitioning of the covariates into two sets. The first set consists of covariates that are assumed to have a known relationship with the treatment and outcome while the second set consists of covariates that are assumed to
have an unknown relationship with the treatment and outcome. SDNNs are thus well-suited to settings where treatment and outcome are confounded with many observable factors in complex but partially known ways. For example, the use of SDNNs to estimate nuisance functions is suited to panel data (as in our setting) because the method can deal with clustering via fixed effects, while accommodating non-linear combinations of the remaining covariates in a totally flexible manner (Crane-Droesch, 2017; Athey and Wager, 2019). To the best of our knowledge, this paper is the first to adopt SDNNs in ORF to estimate the nuisance function.

We operationalize SDNNs using a deep feedforward neural network architecture with multiple inputs. For ease of notation, let $\chi = (X,W)$ represent all the observed covariates. We form two sets based on χ, denoted as χ^p and χ^n, which enter the parametric and nonparametric components of the nuisance functions respectively. Then, we can re-write the nuisance functions as

$$q_0(\chi) = q_{01}(\chi^p) + q_{02}(\chi^n), \quad g_0(\chi) = g_{01}(\chi^p) + g_{02}(\chi^n)$$

where, the first (second) function in each equation represents the known parametric (nonparametric) component of a nuisance function. The SDNNs for estimating the nuisance function q is represented in below:

$$Y_{it} = q_{01}(\chi^p_{it}) + V^1_{it} \Gamma^1 + \epsilon_{it}$$

$$V^1_{it} = \sigma(\gamma^2 + V^2_{it} \Gamma^2), V^2_{it} = \sigma(\gamma^3 + V^3_{it} \Gamma^3), \ldots, V^L_{it} = \sigma(\gamma^L + \chi^n_{it} \Gamma^L)$$

(2)

where, V^l are nodes at the lth layer, Γ^l are weights that map the data to the outcome via the intermediate nodes, and $\Gamma^{2:L}$ are weight matrices of dimensions equal to the number of nodes of the lth layer and the next layer up. The activation function $\sigma(.)$ accommodates the nonlinear functional mappings by converting the input signal (from the previous layer) to an output signal of the current layer. Common choices are sigmoids, hyperbolic tangent, and ReLU. The number of layers and the number of nodes per layer are predetermined hyperparameters. A similar SDNNs can be designed for estimating g, when replacing the outcome by T_{it}. Because the top layer is a
linear model in the χ^p and derived variables V_{it}^1, covariates in the parametric component χ^p thus have a linear relationship with the treatment and outcome.

We train the SDNNs by minimizing a loss function which is defined as weighted sum-of-square errors between the true value and model estimates. The weight a_i for each observation in D_1 is obtained by running the same tree learner over B random subsamples (without replacement). To mitigate overfitting, we employ weight decay using L_2 regularization, a widely-used technique for regularizing neural network models. Therefore, we can estimate the nuisance functions by minimizing the loss function of our SDNNs defined in Equations (2):

$$\hat{q} = \arg \min_q \sum_{i \in D_1} a_i (Y_{it} - q_1(\chi^p) - V_{it}^1 \Gamma^1)^2 + \lambda_q ||q||^2$$

$$\hat{g} = \arg \min_g \sum_{i \in D_1} a_i (T_{it} - g_1(\chi^p) - V_{it}^1 \Gamma^1)^2 + \lambda_g ||g||^2$$

where, $\lambda \geq 0$ are the regularization parameters. Larger values tend to shrink the parameters in the parametric and nonparametric components toward zero. See Appendix C for a detailed instruction of how to enable SDNNs in ORF using Python.

5 Price Sensitivity and Temporal Distance to Livestream

5.1 Empirical Approach

We now apply ORF to understand how the price elasticity of demand changes over Live life-cycle. As discussed in Section 4, when estimating nuisance functions using SDNNs, we pass the variables that are in italic format in Table 1 into linear component to control for creator, category, and time fixed effects, while pass all other covariates into nonlinear component to allow for flexible interactions among them. As our objective in this section is to document the price elasticity variation relative to the temporal distance to the Live, we consider 29 test points within the window of
14 days before and after the scheduled live day, i.e., \(d \in \{-14, -13, ..., 0, ..., 13, 14\} \). The hyper-parameter in the neural network is suitably chosen to maximize predictive performance of both the price and demand equations. Details on how the SDNNs are trained are provided in Appendix D.

5.2 Main Results

Figure 6 displays the price elasticities over the Live life-cycle. The shaded region is the 95% confidence interval obtained via 100 bootstrap samples. The estimated price elasticity is about \(-0.5\) around 14-day before the scheduled Live day, becomes less negative approaching the scheduled Live day, reaches around zero on the scheduled live day. Over the post-livestream period, demand is still price elastic at around \(-0.1\), but surprisingly, it is much less sensitive than the pre-livestream demand. The difference between pre-livestream and post-livestream price elasticities can be as large as 80%. The pattern above suggests that the live part of the content is valuable, but there is also considerable value in the content that is not centered in its live attribute. Our research findings suggest the value for platforms and creators to implement dynamic pricing, promotion, and targeting over event life-cycle. However, meaningful policy implications cannot be derived without a further understanding of mechanisms driving the results. Therefore, we will conduct a series of analysis in section 6 to exploring the underlying mechanisms.

It is important to note that the magnitude of price elasticity is small in most cases, between \(-1\) and 0, suggesting relatively inelastic demand in the Zhihu Live market. A natural question to ask then is why creators do not raise prices. This is most likely due to the fact that there are norms that are typically established for live events in a given market and event providers do not usually set prices outside these norms. This has been documented in previous research for many

9 Note that there is no formal rule to determine the number of test points. We choose these test points in order to obtain a reasonable tradeoff between granularity (of the estimates) and computational load.

10 There seems to be a small magnitude of fluctuation in the temporal pattern estimates over the pre-livestream period shown in Figure 6. Also, the confidence interval over pre-livestream period is slightly wider compared to post-livestream period. These patterns may be driven by two factors. One is that Lives are listed on the market for purchase at difference temporal distance, so the number of unique Lives involve at each temporal distance are different over pre-stream period. The second is the randomness created by subsampling and sample splitting in each iteration process of random forest.
Figure 6: Price Elasticity over Time to Scheduled Live Day

Note: The shaded region depicts 95% confidence interval via 100 bootstrap resamples.

<table>
<thead>
<tr>
<th>Competitor</th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhihu Live</td>
<td>12.81</td>
<td>13.82</td>
<td>9.50</td>
</tr>
<tr>
<td>Himalaya FM</td>
<td>5.95</td>
<td>4.06</td>
<td>5.56</td>
</tr>
<tr>
<td>Dedao</td>
<td>3.52</td>
<td>2.68</td>
<td>2.58</td>
</tr>
<tr>
<td>Lychee Live</td>
<td>12.87</td>
<td>4.95</td>
<td>29.43</td>
</tr>
<tr>
<td>Qianliao Live</td>
<td>3.36</td>
<td>2.91</td>
<td>3.01</td>
</tr>
</tbody>
</table>

Note: The survey was conducted by randomly scraping about 100 paid content/events that were streamed during 2016-2017 on each platform. To make sure that prices are comparable across platforms, we anchored the unit to RMB/30min.

types of live events (e.g., concerts, performing arts) (e.g., Zieba, 2009; Felton, 1992; Pompe et al., 2018; Buzanakova and Ozhegov, 2016). In order to check that this also holds in our setting, we surveyed the prices of live content on Zhihu and competing platforms in China during 2016-2017, by randomly scraping about 100 paid content/events from each platform. As shown in Table 6, the price points for Lives hosted on Zhihu are typically higher than those of comparable events on
competing platforms. This suggests that there is little room for creators on Zhihu Live to increase their prices.

5.3 Robustness Checks

A possible explanation for the main result shown in Figure 6 is that the temporal pattern is driven by different types of consumers purchasing at different temporal distance to the livestreaming day. These differences across consumers could be based on observable or unobservable characteristics.

5.3.1 Differences on Observables

It is likely that consumers with different engagement levels on Zhihu - an observable - arrive to purchase at different temporal distance. For example, consumers who have higher engagement and loyalty to Zhihu may have a higher tendency to arrive on or before livestreaming starts than others. We therefore examine differences on observables by zooming in on three important consumer characteristics that capture user engagement on the platform: consumer lifetime, follower count and followee count on the Q&A community at the time of purchase.\(^{11}\) We regress each of the three consumer characteristics on Live characteristics (e.g., unit price, cumulative demand) and the fixed effects of temporal distance, calendar (transaction) day and Live category. We use transaction-level data within 14-day before and after the scheduled live day.\(^{12}\) The point estimates in the temporal distance fixed effects provide an estimate of how consumers who bought a given Live differed over temporal distance to the day of livestream.

The estimated fixed effects of different temporal distances are displayed in Figure A4 of Appendix E. We find that the estimates are quite noisy and the differences in estimates are mostly insignificant (or very small in magnitude if significant). Therefore, it seems extremely unlikely that differences across these observables could account for about 80% decrease in consumer price elasticity from pre-period to post-period.

\(^{11}\)We use consumer characteristics on the Q&A platform rather than those on the Live market because about 80% consumers only purchased once in our data period, leading to very sparse information about each consumer.

\(^{12}\)We use transaction-level data instead of panel data because if a Live has zero transaction on a day, then consumer characteristics will be missing value for that day.
Another type of observable that could account for the temporal dynamics in price elasticity could be purchase activity. Specifically, it could be that a small group of heavy consumers is driving the main finding. We therefore order consumers according to their total number of purchases and re-estimate the price elasticities after dropping the top 1% of consumers. The estimation results are shown in Figure A5 of Appendix E. As can be seen from the figure, our main results are robust to the exclusion of these extreme consumers.

5.3.2 Differences on Unobservables

It is possible that consumers vary systematically on their preference - an unobservable - for consuming live versus recorded content. We therefore partition all consumers into three segments: pre-loyal (consumers who have only purchased before day of livestream), post-loyal (consumers who have only purchased access to recorded versions of Lives i.e., after day of livestream), and intersection (consumers who have purchased Lives in both periods). Table 7 shows the details of each segment. As can be seen from the table, the intersection segment comprising 20% of consumers is the most active, accounting for 64% of all transactions. For each Live-day observation, we recompute the daily demand within each consumer segment. We then replicate the ORF estimation for each consumer segment separately. For the intersection segment, we estimate price elasticity as before for \(d \in [-14, 14] \). We estimate the price elasticity for \(d \in [-14, 0] \) for the pre-loyal segment and over \(d \in (0, 14] \) for post-loyal segment.

<table>
<thead>
<tr>
<th>Table 7: Consumer Segment Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. Consumers</td>
</tr>
<tr>
<td>% Consumers</td>
</tr>
<tr>
<td>% Transactions</td>
</tr>
<tr>
<td>Num. pre-livestream purchases</td>
</tr>
<tr>
<td>Num. post-livestream purchases</td>
</tr>
</tbody>
</table>

Note: The last two rows report the average purchases per consumer within each consumer segment with the standard deviation in parentheses.
Figure 7: Time-varying Price Elasticity across Consumer Segments

(a) Price Elasticity of the Intersection Segment

(b) Price Elasticity of the Pre-loyal and Post-loyal Segment

Note: Pre-loyal (post-loyal) segment consists of consumers who have only purchased Lives over pre-livestream (post-livestream) period; intersection segment consists of consumers who have purchased over both periods. The shaded region depicts 95% confidence interval via 100 bootstrap resamples.
The estimation results are shown in Figure 7. As can be seen from this figure, the temporal pattern for the consumers in the intersection segment is very similar to the temporal pattern shown in Figure 6. This provides strong evidence that our main results are not driven by systematic differences between consumers who buy only in the pre-livestream period and those who buy only in the post-livestream period. In addition, the pre-livestream temporal patterns are replicated among consumers in pre-loyal segment, and the post-livestream temporal patterns are also replicated among consumers in post-loyal segment. As a result, we can conclude that the temporal variation in the price elasticity of demand is not driven by selection on unobservables among consumers.

6 Mechanisms

So far we have shown systematic dynamics in the price elasticity of demand in terms of the period before, on the day of and after the livestream. We also show that these dynamics are not caused by selection across consumers. In this section, we examine the potential mechanisms driving our main results.

6.1 The Value of Live Interaction

We start by focusing on the inelastic demand on the scheduled day for livestream. Given the setting, the most likely mechanism is that consumers place a high value on live interaction with the creator. Imagine that a consumer is deciding which Live to purchase. If the consumer purchases a Live that will be aired on the same day, s/he will be able to enjoy the live interaction immediately. This is much more attractive compared with purchasing Lives that will be aired in the future.

To test this possible mechanism, we focus on 317 Lives for which seats were filled up within

13Note that the slightly wider confidence bands in Figure 7 compared to Figure 6 are due to increased data sparsity after data partition into different consumer types.

14Table 7 shows that the standard deviation of the average number of purchases per consumer is large, indicating the existence of extreme consumers within each segment. This is especially true for the intersection segment. Therefore, for each consumer segment, we order consumers according to their total number of purchases and re-estimate the price elasticities after dropping the top 1% of consumers. The estimation results of each segment are robust to the exclusion of extreme consumers. The results are available upon request.
one week before the scheduled day for livestream. For these Lives, consumers who purchased on the livestreaming day were not allowed to interact with the creator during the livestream. If our proposed mechanism is at play, the price elasticity on the scheduled livestreaming day will be significantly negative for these lives (as live interaction is no longer possible). To test this prediction, we replicate our main analysis using these Lives. The results are displayed in Figure 8. Consistent with our expectation, there is a sharp drop in price elasticity on the scheduled day for livestream, leading to a significantly negative price elasticity. This strongly suggests that the inelastic demand on scheduled live day in our main result, Figure 6, is driven by the value inherent in real-time interaction with the creator.

Figure 8: Price Elasticity over Time to Scheduled Live Day among Filled-up Lives

Note: The seats are filled up when cumulative sales reach the seat limit set by the creator. The shaded region depicts 95% confidence interval via 100 bootstrap resamples.

In addition, we find that price elasticity in Figure 8 is essentially zero for $d \in [-10, -1]$, i.e., during the period that cumulative sales get close to the seat limit. This suggests that consumers

15The one week cutoff is conservative as a longer cutoff would make our result even stronger. In analyses available from the authors on request, we find that our results are robust if we use the data on all 583 Lives that were sold out before the day of airing.
value the opportunity of interacting with creator in general, even when the livestream will occur a few days after the purchase. In order to test this more formally, we examine how the price elasticity of demand changes on a daily basis relative to the day that the seat limit was reached. As can be seen from Figure 9, the price elasticity shows an increasing trend, reaching zero, before the seat limit is reached. In contrast, there is a decreasing trend immediately after the seat limit is reached. Take together, these results suggest that consumers place a high value on the opportunity of real-time interacting with creator during livestream.

Figure 9: Price Elasticity Before and After Seats Sell Out

Note: The shaded region depicts 95% confidence interval via 100 bootstrap resamples.

6.2 The Importance of Live Quality

We now turn to the mechanism driving the less price-sensitive demand over the post-livestream period. In the Zhihu Live market, creators typically provide content on serious (non-entertainment) topics. Given that this requires a reasonable level of in-depth knowledge and expertise, most creators usually offer only one Live. Thus, from the consumer perspective, there is considerable uncertainty about the quality of each Live. This uncertainty is higher over the pre-livestream period
than over the post-livestream period because consumer ratings and reviews become available when recorded livestream is released. Therefore, the reduction in uncertainty may potentially explain why post-livestream demand is much less price-sensitive than the pre-livestream demand.

In order to consider this as the potential driving mechanism, we need to first establish that live quality impacts consumer willingness-to-pay on the Zhihu Live market. We measure the quality of a Live using its rating, which is provided by consumers who have purchased and consumed the Live. As noted above, the rating is only available after the livestream ends. We therefore focus on post-livestream transactions to examine the impact of quality on willingness-to-pay. Figure 10 shows the distribution of rating score across all the Lives in our data. We can see that about 95% of Lives have a rating between 3 and 5 (on a 5 point scale).

If Live quality does matter, then demand should be less price sensitive for Lives with a higher rating (Zeithaml, 1988; Kirmani and Wright, 1989; Isik et al., 2004; Okada, 2010; Tsui, 2012). To investigate this, we treat rating score as the target feature in ORF. We use six test points evenly
distributed over the interval \([3, 5]\), given the sparsity of Lives with a rating below 3. The estimation results are shown in Figure 11. Consistent with our expectation, we find that demand is less price sensitive for Lives with higher rating score. In particular, a Live rated 5 has a price elasticity (on average) at least 65% lower than one rated 3. This suggests that consumers have much higher willingness-to-pay for high-quality content, confirming that quality matters in Zhihu Live market.

![Figure 11: Price Elasticity and Rating Score](image)

Note: This figure reports the changes in price elasticity across rating score over the range \([3, 5]\). The shaded region depicts 95% confidence interval via 100 bootstrap resamples.

6.3 Quality Uncertainty Reduction

Given that Live quality impacts the willingness-to-pay, we investigate the uncertainty reduction mechanism in detail by leveraging findings in the prior literature that consumers typically use informations cues to lower uncertainty (Lanzetta, 1963; Urbany et al., 1989). In our context, if uncertainty about Live quality indeed reduces after livestream concludes, we would expect to see reduced impact of information cues on purchase decision over the post-livestream period.

We test this by estimating the impact of information cues on price elasticity of demand over
the pre-period and post-period separately. In particular, we consider four information cues on the Zhihu Live market: social proof, consumer prior knowledge of a creator, creator reputation, and content category. Note that it is indeed possible that consumers use other information cues to reduce uncertainty. However, we focus on these four due to our limited data availability.

6.3.1 Social Proof

Literature on observational learning has shown that consumers could infer quality from popularity information (e.g., how much existing consumers have purchased the product) (Cai et al., 2009; Tucker and Zhang, 2011). In the Zhihu Live market, the key product-specific popularity information is the cumulative sales of a Live, which is displayed prominently on the Live page over its entire life cycle. If consumers rely on popularity information to resolve uncertainty, we expect to see a negative association between consumer price elasticity and cumulative demand. In addition, if uncertainty reduces after the live event concludes, we expect that the popularity information plays a less important role for post-livestream purchases.

To investigate the role of popularity information, we apply ORF algorithm to understand how price elasticity changes with the cumulative demand of a Live within pre- and post-periods, respectively. Our target feature in ORF is the log-transformed cumulative demand of a Live by each day. Figure 12 reports the estimation results with 7 testing points. Consistent with the pattern in our main results, we find that, on average, price elasticity of demand is much stronger (i.e., more negative) over the pre-livestream period. More importantly, over the pre-livestream period, price elasticity (in absolute value) decreases as the cumulative demand increases, suggesting that the social proof embedded in popularity information plays an important role for pre-livestream purchases. In contrast, over the post-livestream period, the price elasticity of demand for the recorded version is almost inelastic to cumulative demand. These results provide suggestive evidence that consumers only rely on popularity information to make their purchase decision over the pre-livestream period i.e., when the uncertainty about the Live quality is high.

It is possible that cumulative demand is just acting as a proxy for the temporal distance to
Figure 12: Price Elasticity and Cumulative Demand

Note: Each line shows the changes in price elasticity with the log-transformed cumulative demand within a period. The shaded region depicts 95% confidence interval via 100 bootstrap resamples.

Figure 13: Price Elasticity over Time to Scheduled Live Day and Cumulative Demand

Note: This figure depicts the changes in price elasticity with the log-transformed cumulative demand and the temporal distance to the scheduled live day within the pre-livestream period.
scheduled live day, especially over pre-livestream period. In that case, the pattern in Figure 12 could just reflect demand as the livestreaming day gets closer. Thus, we repeat ORF estimation using all the pre-livestream observations, while setting both cumulated demand and temporal distance to the livestreaming day as target features. We consider a grid of $98 = 7 \times 14$ test pairs. The results are shown in Figure 13. We find that the pattern of social proof can be replicated at every temporal distance (the x-axis). This suggests that the social proof mechanism is present regardless of the temporal distance to airing. Finally, we want to note that the social proof mechanism not only explains the less price-sensitive demand over post-livestream period, but also sheds light on the decreasing price elasticity (in absolute value) as the scheduled livestreaming day gets closer in our main result in Figure 6.

6.3.2 Consumer Prior Knowledge on Creator

Consumers can also infer the quality of a Live from their prior knowledge about the creator. In other words, all else being equal, the more the knowledge they have about the creator, the lower the uncertainty. One way consumers can obtain this knowledge is to follow the creator on the broader Zhihu (free) Q&A community. By doing so, a consumer gets access to the creator’s (free) content on own personalized content-feed. This will help the consumer determine better the expertise level of the creator, leading to lower uncertainty about the quality of the creator’s Live.

Following this logic, we split all the individual transactions into two groups based on whether each consumer had followed a creator before she purchased the creator’s Live. About 20% of consumers had followed the creators before purchasing. These consumers account for about 17% of all transactions. We label them as the group with relatively high prior knowledge, and label the remaining consumers as the group of consumers with relatively low prior knowledge. Then, for each group we aggregate all the transactions at Live-day level and repeat ORF algorithm with temporal distance to scheduled livestreaming day as our target feature.

Figure 14 presents the results for both consumer groups. First, the overall temporal dynamics in both consumer groups are consistent with the main results shown in Figure 6, with slight differ-
ences on the absolute magnitudes of the price elasticities. Second, the high prior knowledge group is significantly less price sensitive than the low prior knowledge group at all temporal distances, except for a few days around the scheduled livestreaming day. This observation confirms our hypothesis that prior knowledge about a creator can influence consumer perceived quality uncertainty and hence price sensitivity. Third, going from the pre-livestream to the post-livestream periods, the difference in price elasticity between the two consumer groups is reduced significantly, suggesting that consumers are much less likely to rely on their prior knowledge on creator to resolve uncertainty over the post-livestream period.

![Figure 14: Price Elasticity and Consumer Prior Knowledge on Creator](https://ssrn.com/abstract=3878605)

Figure 14: Price Elasticity and Consumer Prior Knowledge on Creator

Note: We categorize consumers who have followed the creator before purchase into the high prior knowledge group, and those who have not into the low prior knowledge group. The shaded region depicts 95% confidence interval via 100 bootstrap resamples.

6.3.3 Creator Credibility

Previous literature on reputation building suggests that consumers often rely on seller credibility to infer product quality, and tend to have higher willingness-to-pay if the seller has high credibility (Tellis, 1988; Bolton, 1989; Bijmolt et al., 2005; Hitsch et al., 2019). In the context of Zhihu,
even if a consumer has never followed a creator, the consumer may still be able to resolve quality uncertainty by examining the creator’s reputation in the free Q&A community. In particular, the total number of followers is the most important indicator of a user’s reputation and expertise level on Zhihu, as followers have to be gained through persistent contribution of high-quality content in the free Q&A community, as is common on many other UGC platforms (Toubia and Stephen, 2013; Goes et al., 2014). If consumers use the number of followers that a creator has gained to resolve uncertainty, we expect that consumers are less price-sensitive to Lives hosted by creators with a larger number of followers. In addition, if uncertainty reduces after live event concludes, we expect to see a lower impact of follower size on post-period demand.

To test this hypothesis, we apply ORF algorithm to understand how consumer price elasticities vary across creator follower size over the pre-livestream and post-livestream periods. Our procedure can be described as follows. We first compute the cumulative follower size of each creator i by the time of his/her Live j that belong to topic k, denoted as \mathcal{F}_{ijk}. Because there is very large heterogeneity in readership across topics on Zhihu, the number of followers is meaningful indicator of creator credibility only among creators who host Lives within the same topic category. Thus, for each topic k we obtain the maximum number of followers across all the creators who have hosted at least one Live on topic k, denoted as M_k. We divide each creator’s follower size by the maximum in his/her topic category, to control for inherent differences in popularity across topics. That is, our target feature in ORF algorithm is $\mathcal{F}_{ijk}/M_k \in [0, 1]$, which we call follower share.

The ORF estimation results with 10 evenly distributed test points are shown in Figure 15. One can see a clearly increasing trend in both periods, confirming that consumers are less price sensitive if the creator has a higher reputation on a given topic. In addition, the changes in the magnitudes of price elasticities across follower share are significantly sharper over pre-livestream period than over post-livestream period. This is also consistent with our earlier argument that consumers are more likely to use other sources of information to infer Live quality when word-of-mouth on the

16For example, creator A who is active in popular topics that suit mainstream tastes, such as Information Technology, is more likely to have larger follower size than the equally-successful creator B who is active in topics with a narrower appeal, such as Humanities.
same Live is not available over pre-livestream period. When comparing the magnitudes of the two lines, we find that consumers are overall less price sensitive over post-livestream period than over pre-livestream period when the follower share is below 0.6, which is consistent with our main results. As the follower share reaches one, which describes highly established creators, demand become price inelastic or even exhibits slightly positive elasticity. These results provide suggestive evidence that follower size is a key piece information that consumers can use to reduce uncertainty about Live quality, especially over the pre-livestream period.

![Price Elasticity and Creator Reputation in the Q&A Community](image)

Figure 15: Price Elasticity and Creator Reputation in the Q&A Community

Note: The shaded region depicts 95% confidence interval via 100 bootstrap resamples.

6.3.4 Live Topic Category

Existing literature suggests that one way consumers mitigate uncertainty about a purchase decision is through the use of a heuristic that rests on product category characteristics (Bettman, 1974; Scatton, 1995). For example, a product might be perceived to be of lower quality when there is higher quality variance in the corresponding category. In the context of Zhihu Live, consumers are likely to rely on the topic category of a Live to mitigate uncertainty. Each Live can belong to one of 17
topic categories in the Zhihu Live market. Using common perceptions of these categories, we classify eight of these as “hard,” as they usually have more objective content than the remaining nine, which we classify as “soft.” The hard categories are Law, Business, Econ&Fin, Healthcare, Architecture&Interior Design, Art Appreciation&History, Science&Technology and Sports. The soft categories are Internet, Psychology, Education, Travel, Life Style, Food & Cuisine, Career, Reading & Writing, Music/Game/Movie.\(^{17}\) The literature suggests that soft categories generally have higher (perceived) quality uncertainty than hard categories (Levitt, 1981; Bebko, 2000; Castelo et al., 2019; Dai et al., 2020). We also see this in our data as the variance in rating across Lives in the soft categories is significantly higher than that in the hard categories ($p < 0.05$).

![Figure 16: Price Elasticity and Live Topic Category](image)

Note: The error bars depict 95% confidence interval via 100 bootstrap resamples.

We apply ORF to estimate how the price elasticity of the pre- and post-livestream demand

\(^{17}\)We do not claim that this classification is based on formal criteria. However, as our objective is to provide correlational evidence for the uncertainty reduction mechanism, misclassification of one topic here or there is unlikely to matter.
varies across the 17 topic categories, respectively. Figure 16 reports the estimation results, with the eight hard topics on the left of the figure and the nine soft topics on the right. First, consistent with our previous main results, demand is significantly less price-sensitive over the post-livestream period than over the pre-livestream period across all topics. Second, demand is much more price-sensitive for the soft topics than for the hard topics, over both pre- and post-livestream periods. This is consistent with our assertion that uncertainty level differs across topics and that it affects consumer price sensitivity. Lastly, by comparing the magnitudes of the price elasticities between hard and soft topical categories within each time period, we find that their differences are significantly higher over pre-livestream period than over post-livestream period ($p < 0.05$). This suggests that consumers rely more on category characteristics (as heuristics) for pre-livestream purchases, while relying less on category characteristics for post-livestream purchases. This sharp difference provides confirming evidence on our proposed quality uncertainty reduction mechanism.

7 Conclusion and Discussion

This paper represents one of the very early studies on the fast growing phenomenon of livestreaming. While there is widespread belief that the value of livestreaming lies in its live part, there is virtually no research that has examined this. In this paper, using data from a large livestreaming platform (Zhihu Live), we build a modeling framework to estimate this value over the life-cycle of the livestream. By leveraging the fact that Zhihu Live also provides access to recorded, non-live, content at the same price as for the live content, we document the dynamics in price responsiveness of demand over temporal distance to the scheduled livestreaming day and after. We find that demand becomes less price-sensitive gradually over time to the scheduled live day and is inelastic on the day of livestream. Over the post-livestream period, demand is still price elastic, but surprisingly, it is much less sensitive than the pre-livestream demand.

We further provide correlationally consistent evidence for two key mechanisms that drive our main results. First, we show that consumers value the opportunity of real-time interaction with
creators highly. This lowers their price sensitivity dramatically, leading to inelastic demand on the
day of livestream. Second, we show that Live quality matters to consumers. Consumers seem to
use at least four information cues - social proof, consumer prior knowledge of a creator, creator
reputation, and topic of Live - to lower their quality uncertainty, showing a higher willingness-to-pay whenever quality uncertainty is lower. As such, quality uncertainty reduction (and not
selection across consumer types) plays a role for the gradually decreasing trend in price elasticity
over the pre-livestream period and the much less price-sensitive demand over the post-livestream
period.

Our research findings have important managerial implications. First, the results confirm that
some of the value of livestream lies in the real-time consumer-creator interaction. Second and
more surprisingly, the results show that live content has value beyond the live part. In other
words, there is considerable value in the content that is not centered in its live attribute. Currently,
many livestreaming platforms (e.g., Instagram Live, YouNow) only support live broadcasts and
do not offer build-in recording functions; some platforms (e.g., Facebook Live, Periscope) offer
built-in recording and replay functions, but generally devote very few resources towards managing
recorded versions of live events. Our research findings are likely to be valuable to both streamer-
s/creators and platforms in the sense that they encourage them to provide both live and recorded
content to enhance revenue and provide value to consumers.

In addition, marketing efforts to reduce uncertainty about upcoming events could also be bene-
ficial for all parties (consumers, creators, and platforms). Specifically, platforms can improve their
online rating system and other operating policies (e.g., filtering and search functions) to reduce
information asymmetry. Creators can benefit from providing detailed descriptions of upcoming
events and building reputation in the Q&A community. More broadly, our findings on the value of
livestreaming content over its entire life-cycle can be used by platforms and creators to implement
dynamic pricing, promotion, and targeting. For example, it could be beneficial for platforms and
creators to target consumers who have lower uncertainty (e.g., followers of creators) in the early
stage of pre-livestream period, while target those who are higher quality concerns in the post-
livestream period. Also, price promotion appears to be more profitable early in the pre-livestream period, when demand is relatively more sensitive to price.

Methodologically, we demonstrate a novel approach for causal inference using observational data. In particular, we generalize ORF via the use of SDNNs for nuisance estimation. The generalized ORF is well suited to panel data because it can handle clustering effect via fixed effects, while allowing for nonlinear transformation of other covariates. We believe that this framework is applicable in other real-world settings with highly-differentiated goods and high-dimensional covariates, such as personalized advertising and recommendations.

We hope this paper will stimulate further empirical study of livestreaming markets, especially as our study has some limitations. First, we use data from a single livestreaming platform where creators provide livestreaming content on non-entertainment topics. It is indeed possible that the value of livestreaming may show up differently on entertainment focused platforms, as consumers might place different (e.g., higher) valuation on live experience (relative to recorded content) in entertainment focused consumption. Second, there is no intertemporal price variation in the price of a Live in our data. Thus, future research can examine the impact of more complex pricing strategies. Third, our research focuses on the effect of price while controlling for other (non-price) marketing mix elements, e.g., advertising. However, an important area of research is the effectiveness of these elements and their joint impact with price over the life-cycle of livestreaming.

References

A Examples of Zhihu Interfaces

Figure A1: Example of a Question and Its Answers

Electronic copy available at: https://ssrn.com/abstract=3878605
Figure A2: Example of User Profile Page
Figure A3: Example of a Live Session

Note: This figure illustrates the interface of a Live. During the livestream, the creator will give a real-time talk via voice/text/picture messages. The creator can also address questions raised by consumers. Notice that only consumers who purchased the Live before seats are filled up are able to raise questions and leave comments during the livestream.

B Details of ORF Algorithm

In this Appendix, Algorithm 1 describes how ORF uses the forest-based kernel learner to perform kernel estimation, Algorithms 2 and 3 describe how to train the forest-based kernel learner. For the purpose of illustration, we simplify the problem set-up described in Section 4.1 by changing subscript of all variables/data from \(it \) to \(i \) throughout this section.
Algorithm 1 Orthogonal Random Forests

Input: data set \(D \) of size \(N \), target feature vector \(x \), base tree learner \(L_T \), the number of trees \(B \), subsamples size \(s \), and minimum observation per leaf \(r \)

1. Randomly partition \(D \) into two data sets \(D_1 \) and \(D_2 \) of equal size
2. **procedure** NUISANCE ESTIMATION
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

Output: The conditional average treatment effect \(\hat{\theta}(x) \) at \(x \)
Algorithm 2 Gradient Tree (Forest-based Kernel Learner)

Input: tree splitting sample S_1, estimation sample S_2, minimum leaf size r, minimum ratio at each split ρ, maximum number of splits (tree depth) τ, number of randomly selected candidate features m at each split, and number of proposed split points k

1: Initialize the tree with root node P_0 covering the whole feature space, and the Queue $Q = \{P_0\}$
2: Initialize the observations belong to the current node P_0 as $S^{P_0} = \{S_1, S_2\}$
3: Initialize the accumulated number of splits $accSplits = 0$
4: **while** $NotNull(P \leftarrow Q)$ & $accSplits \leq \tau$ **do**
5: Perform the second-stage estimation of $\hat{\theta}_P$:
 - Estimate nuisance function \hat{q}_P and \hat{g}_P for observations in S^p_1 \triangleright See Appendix C
 - Calculate the residuals: $\tilde{Y}_i = Y_i - \hat{q}_P(X_i, W_i)\), $ \tilde{T}_i = T_i - \hat{g}_P(X_i, W_i)$
 - Solve the optimization problem: $\hat{\theta}_P = \arg\min_\theta \frac{1}{|S^1|} \sum_{z_i \in S^p_1} \frac{1}{2}(\hat{\theta}_T - \tilde{Y}^2_i)^2$
6: Compute the empirical Hessian: $A_P = -\sum_{i \in S^p_1} \tilde{T}_i^2 / |S^p_1|$ \triangleright See Algorithm 3
7: Generate k split points $Cand_p$ based on S^p_1
8: **for** each candidate split point $C \in Cand_p$ with children nodes C_1 and C_2 **do**
9: Obtain the remaining subsamples that belong to the children nodes, denoted as $S^{C_1} = \{S^{C_1}_1, S^{C_1}_2\}$, $S^{C_2} = \{S^{C_2}_1, S^{C_2}_2\}$
10: **if** $\min\{|S^{C_1}_1|, |S^{C_2}_1|\} \geq r$ & $\min\{|S^{C_1}_2|/|S^{C_1}_1|, |S^{C_2}_2|/|S^{C_2}_1|\} \geq \rho$ **then**
11: Compute the approximated estimates at each children node $j \in \{1, 2\}$:
 - $\hat{\theta}_{Cj} = \hat{\theta}_P - \sum_{i \in C_j} A_p^{-1}(\tilde{Y}_i - \hat{\theta}_P \tilde{T}_i) \tilde{T}_i$
12: Compute the proxy heterogeneity score at node C:
 $$\Delta(C_1, C_2) = \sum_{j=1}^2 \frac{1}{|C_j|} (\hat{\theta}_{Cj} - \hat{\theta}_P)^2 = \sum_{j=1}^2 \frac{1}{|C_j|} (\sum_{i \in C} A_p^{-1}(\tilde{Y}_i - \hat{\theta}_P \tilde{T}_i) \tilde{T}_i)^2$$
13: **else**
 - Remove candidate C from the set $Cand_p$
14: **if** $NotNull(Cand_p)$ **then**
15: Select $C^* \in Cand_p$ that maximizes the proxy heterogeneity score
16: Update the sample S^{S_j} as these belong to the children node C^*_j for $j \in \{1, 2\}$
17: Update $\{C^*_1, C^*_2\} \leftarrow Q$, and $accSplits = accSplits + 1$

Output: tree T_{P_0} with root node P_0
Algorithm 3 Proposal Splitting Points

Input: \(d\)-dimensional feature space data \(X\) that are relevant at node \(P\), number of selected features \(m\), and number of proposal split points \(k\)

1. Randomly pick \(m\) columns of \(X\), denoted as \(Z\)
2. for each feature \(j = 1, 2, ..., m\) do
3. \(\) Sort the possible value of \(Z_j\), denoted as \(V_j = \{v_1, v_2, ..., v_N\}\)
4. Add \(\min\{k, |V_j|\}\) randomly selected values from \(V_j\) to \(Cand_p\)
5. candidate split points \(Cand_p\) at node \(P\)

\[\]

B.1 Random Forest as a Weights Learner

We first describe the forest-based kernel learner, whose pseudo code is provided in Algorithm 2. This procedure relies on a few forest regularity conditions required for convergence. Please refer to Oprescu et al. (2018) for details. The random forest algorithm proceeds over \(B\) iterations. For each iteration \(b\), it first randomly subsamples a subset \(S_b\) without replacement from the full dataset, which contains \(n\) observations \(D = \{Z_i = (T_i, Y_i, W_i, X_i)\}_{i=1}^n\). The tree learner \(L_T\) then randomly partitions \(S_b\) into two subsets of equal sizes \(S_{b1}, S_{b2}\). The learner uses \(S_{b1}\) to grow the tree (i.e., place splits in the tree), and uses the feature \(X_i\) in \(S_{b2}\) for stopping rules and balance maintenance. To ensure honesty of the tree (Athey et al., 2019), \(L_T\) does not select the splits using the controls and outcomes in \(S_{b2}\), which will be used for kernel estimation later. That is, in order to reduce prediction bias, forests use only the first half of the randomly split subsample for splitting, while the second half for populating the tree’s leaf nodes: each new example is “pushed down” the tree and added to the leaf in which it falls. This is a key difference from classic random forests in which a single subsample is used both to choose a tree’s splits and for the leaf node examples used in predictions.

Similar to GRF, the tree learner starts with a root node that contains the entire feature vector space, iteratively grows the tree by greedily selecting the splits that maximize certain splitting criterion, until certain stopping condition is met. However, the key modification to GRF’s tree learner is the incorporation of orthogonal nuisance estimation (i.e., DML) in tree splitting criterion. At each internal node \(P\), \(L_T\) will perform the following two-stage estimation for \(\hat{\theta}_P\) over the set of observations in \(S_{b1}\) that reach \(P\) (denoted as \(P \cap S_{b1}\)). First, the algorithm estimates the nuisance functions \(q_0\) and \(g_0\), using any machine learning methods, such as lasso, random forest, and DNNs.
Second, the algorithm uses the estimated nuisance functions, denoted as \hat{q}_P and \hat{g}_P, to residualize the outcome and treatment for each observation that reaches P:

$$\tilde{Y}_i = Y_i - \hat{q}_P(X_i, W_i), \quad \tilde{T}_i = T_i - \hat{g}_P(X_i, W_i)$$ \hspace{1cm} (6)

The residualization step partials out the confounding effects from X_i and W_i in each observation, so these residuals represent exogenous variation that can be used to identify a valid causal effect in a second stage regression (Chernozhukov et al., 2017). Then, the second-stage estimation is obtained by regressing the residualized \tilde{Y} on the residualized \tilde{X}:

$$\hat{\theta}_P = \arg\min_{\theta} \frac{1}{|P \cap S_1^b|} \sum_{Z_i \in P \cap S_1^b} \frac{1}{2}(\theta \tilde{T}_i - \tilde{Y}_i)^2$$ \hspace{1cm} (7)

Given the estimate $\hat{\theta}_P$ at parent node P, we would like to split the parent node into two children C_1 and C_2. Similar to GRF, we seek the split that maximize heterogeneity in the treatment effect estimates across children nodes. Namely, if we perform the same two-stage estimation separately at each child, the new estimates $\hat{\theta}_{C_1}$ and $\hat{\theta}_{C_2}$ will maximize the following heterogeneity score:

$$\Delta(C_1, C_2) = \sum_{j=1}^{2} \frac{1}{|C_j|} (\hat{\theta}_{C_j} - \hat{\theta}_P)^2$$ \hspace{1cm} (8)

However, performing the two-stage estimation of $\hat{\theta}_{C_1}$ and $\hat{\theta}_{C_2}$ for all possible splits is too computationally expensive. Instead, we will approximate these estimates by taking a Newton Step from a parent node estimate $\hat{\theta}_P$. Let us first write the loss function of the second-stage residualized least square regression, $L_{res}(\theta, Z_i) = \frac{1}{2}(\theta \tilde{T}_i - \tilde{Y}_i)^2$. Then for each observation Z_i that belongs to node P, the gradient is $\nabla_{\theta} L_{res}(\hat{\theta}_P, Z_i) = (\tilde{Y}_i - \hat{\theta}_P \tilde{T}_i) \tilde{T}_i$. The empirical Hessian over the observations in parent node P,

$$A_P = \nabla_{\theta}^2 \left(\frac{\sum_{i \in P \cap S_b^1} L_{res}(\hat{\theta}_P, Z_i)}{|P \cap S_b^1|} \right) = -\frac{\sum_{i \in P \cap S_b^1} \tilde{T}_i^2}{|P \cap S_b^1|}$$ \hspace{1cm} (9)

Then, for any child node C given by a candidate split, we could derive a proxy estimate $\hat{\theta}_C$ by
taking a Newton step with data in node C,

$$\hat{\theta}_C = \theta_P - \sum_{i \in C} A^{-1}_P (\tilde{Y}_i - \hat{\theta}_P \tilde{T}_i) \tilde{T}_i$$ \hspace{1cm} (10)

Given the estimates $\hat{\theta}_C$, we compute the proxy heterogeneity score:

$$\tilde{\Delta}(C_1, C_2) = \sum_{j=1}^{2} \frac{1}{|C_j|} (\hat{\theta}_{C_j} - \hat{\theta}_P)^2$$ \hspace{1cm} (11)

We grow the tree by greedily selecting the splits that maximize this proxy heterogeneity score, until certain stopping condition is met. After the tree is grown, the set of observations in S^2_b is “pushed down” to determine which leaf it falls in, while the learner ensures that the leaf contains at least r observations in S^2_b. For each tree indexed $b \in [B]$, let $L_b(x)$ as the set of training example falling in the same “leaf” as the test point x. Then, the tree weight assigned to each observation i is computed as

$$K(X_i, x, (S^1_b, S^2_b)) = \frac{1[(X_i \in L_b(x)) \land (Z_i \in S^2_b)]}{|L_b(x) \cap S^2_b|}$$ \hspace{1cm} (12)

Finally, we assign the importance weight for each observation by averaging over all the B trees:

$$K(X_i, x) = \frac{1}{B} \sum_{b=1}^{B} K(X_i, x, (S^1_b, S^2_b))$$ \hspace{1cm} (13)

For each observation, the importance weight measures the similarity between its feature vector(s) X_i and the target feature point x. It will be used for the next kernel two-stage estimation.

B.2 Weighted Two-Stage Estimation

We now describe how ORF uses the forest-based kernel learner to perform kernel estimation, which is summarized in Algorithm 1. The algorithm first partitions the input dataset D into D_1 and D_2, and runs the forest-based weight learner on D_1 and D_2 to derive two forests and two sets of similarity weights. We use $\{\omega_{ib}\}_{b=1}^{B}$ and ω_i to denote the tree weights and importance weights over the observations in D_1, and use $\{a_{id}\}_{d=1}^{B}$ and a_i to denote the tree weights and importance weights over the observations in D_2. We will utilize these weights to perform a kernel two-stage estimation.
estimation.

In the first stage, we pass the set of weights ω_i to observations in D_1 to estimate the local nuisance functions q_0 and g_0 at $X = x$, denoted as \hat{q} and \hat{g}. As suggested in Chernozhukov et al. (2017), a broad array of sophisticated machine learning methods can be applied here, such as lasso, ridge, DNNs, random forests, and various hybrids and ensembles of these methods. Then, following the cross-fitting approach in DML, we compute the residualized \tilde{Y}_i and \tilde{T}_i for each observation $Z_i = (T_i, Y_i, W_i, X_i) \in D_2$: $\tilde{Y}_i = Y_i - \hat{q}(X_i, W_i)$, and $\tilde{T}_i = T_i - \hat{g}(X_i, W_i)$. We can obtain the estimates of $\theta_0(x)$ by performing a kernel linear regression over observations in D_2:

$$\hat{\theta} = \arg\min_\theta \sum_{i: Z_i \in D_2} a_i (\theta \tilde{T}_i - \tilde{Y}_i)^2$$

(14)

Note that GRF proposed in Athey et al. (2019) also recommends such a residual on residual regression approach in their empirical study, which is referred to as “local centering,” albeit without theoretical analysis. The key difference between “local centering” and ORF is that ORF residualizes locally around test point x, as opposed to performing an overall residualization step and then calling the GRF algorithm on the residuals. Oprescu et al. (2018) have shown that ORF can better minimize non-local mean squared error and improve the final performance of the treatment effect estimates. The reason is that ORF requires that the nuisance estimator achieve a good estimation rate only around the target point x and residualizing locally seems more appropriate than running a global nuisance estimation, which would typically minimize a non-local mean squared error. while it does add some extra computational cost as a separate first stage model needs to be fitted for each target test point.

C Enabling SDNNs in ORF

A team of researchers at Microsoft Research developed a Python package, EconML, for applying machine learning and causal inference method. EconML contains a module for implementing ORF, built on the sklearn library for performing nuisance estimation. sklearn provides a wide

\[\text{See } \text{https://econml.azurewebsites.net/spec/spec.html} \text{ for detailed documentation.}\]
range of parametric and nonparametric methods, such as lasso and standard neural networks architecture, but it doesn’t allow both simultaneously. That is, one can implement ORF using package EconML, only when the nuisance function is assumed to be either completely parametric or having standard neural network architecture. Therefore, to enable flexible nonparametric and parametric form of nuisance function simultaneously in ORF, we contribute to the main ORF library a PyTorch extension. In this section, we first describe step-by-step how one can build a SDNNs in Python, followed by how to enable semi-parametric estimation of the nuisance functions for ORF in Python.

C.1 Building a SDNNs in Python

Among many libraries that can be used for deep learning, we adopt PyTorch, primarily developed by Facebook’s AI Research lab, that offers much flexibility to construct neural network models using built-in functions and classes. We recommend installing PyTorch with Python 3.6 or greater. One will also need to install Skorch, a Python-based library for PyTorch that provides full Skikit-Learn (sklearn) compatibility. The clean sklearn interface offered by Skorch could largely simplify the model training and evaluation process.

Our SDNNs is customized specifically to estimate the nuisance function g_0 and q_0 that capture the confounding effects of covariates on price and demand, respectively. It has two sets of input variables, χ^p and χ^n, which enter the parametric and nonparametric components of the model respectively. This requires a multiple-input feedforward neural network that takes χ^n and χ^p in separate branches and let only χ^n go through the nonlinear operations. The full code for building and training this SDNNs is provided in below. We explain each block in the following sections. For researchers and practitioners, it is easy to extend this semi-parametric framework and customize their own DNNs by harnessing the full power of PyTorch.

2For installation of PyTorch, see https://pytorch.org/get-started/locally/. For installation of Skorch, see https://skorch.readthedocs.io/en/latest/index.html. See Skorch API documentation for a complete list of arguments and methods. Skicit-Learn is an open source Python library that implements a wide range of machine learning using a unified interface. It is by far the easiest and most widely-used tools for machine learning applications.
import numpy as np
from torch import nn
import torch.nn.functional as F
from skorch import NeuralNetRegressor

X = torch.from_numpy(X).float()
Y = torch.from_numpy(Y).float()

class MyModule(torch.nn.Module):
 def __init__(self):
 super(RegressorModule, self).__init__()
 self.dense0 = nn.Linear(260, 100)
 self.dense1 = nn.Linear(100, 100)
 self.output = nn.Linear(100 + 1458, 1)

 def forward(self, X, **Kwargs):
 X1, X2 = X[:, :260], X[:, 260:]
 X1 = F.relu(self.dense0(X1), inplace=True)
 X1 = F.relu(self.dense1(X1), inplace=True)
 X = torch.cat([X1, X2], 1)
 X = self.output(X)
 return X

net = NeuralNetRegressor(
 module=MyModule,
 criterion = torch.nn.MSELoss,
 optimizer = torch.optim.Adam,
 lr = 0.001
 # Shuffle training data on each epoch
 iterator_train__shuffle=True,
)
net.fit(X, Y)
y_pred = net.predict(X)

C.1.1 Data Preparation

Before building a model, we need to convert the input(s) and target(s) to PyTorch variables. Pytorch uses tensor to store and operate on n-dimensional rectangular arrays of numbers, which are similar to NumPy arrays but can also be operated on GPU and provides automatic differentiation that efficiently computes the gradient w.r.t. some parameters. Suppose the input data X and target Y are in Numpy arrays, we could convert them to PyTorch tensors using the following code:

 X = torch.from_numpy(X).float().to(device)
Y = torch.from_numpy(Y).float().to(device)

The command .to(device) send data to the chosen device (CPU or GPU).

C.1.2 Defining a SDNNs

We now illustrate how to implement a SDNNs defined in Section 4.3 using PyTorch API. We first create a class for our own neural network `MyModule` by subclassing `torch.nn.Module`. The `torch.nn.Module` is the base class in PyTorch that contains the building blocks needed to create all sorts of neural network architectures. Through class inheritance, we are able to use all of the functionality of the `nn.Module` base class, but still need to define the hyperparameters (e.g., the number of layers and the number of nodes in each layer) for our own network.\(^3\) The actual code used to define our model looks like this:

```python
import torch.nn as nn
import torch.nn.functional as F

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.dense0 = nn.Linear(260, 100)
        self.dense1 = nn.Linear(100, 100)
        self.output = nn.Linear(100 + 1458, 1)
```

In the first line of the class initialization (def __init__(self)), we have the required Python `super()` function, which created an instance of the base `nn.Module` class. The following three lines are where we create our fully connected layers, which are represented by the `nn.Linear` object, with the first argument being the number of input nodes in layer \(l \) and the second argument being the number of outputs. The first layer `dense0` takes 260 inputs (the dimensionality and the shape of input data must match) and produces 100 outputs, followed by a 100-dim to 100-dim hidden layer `dense1`. These two layers consist a branch that will be used to operate over the set of input variables \(\chi^n \). Then we have the top layer, which accepts the derived 100 nodes from the hidden layer `dense1` along with another set of input variables (corresponds to \(\chi^p \)), and outputs a

\(^3\)Note that it is mandatory to subclass `torch.nn.Module` when you create a class for your own network. The name of your customized class can be anything.
After setting up the “skeleton” of our network architecture, the next step is to define how the data flows through the network and performs the computation. We do this by defining a forward() method in our class. For the forward() method, we supply the input data X, a Tensor contains all of our input variables, as the primary arguments. In the first line of the forward() class, we split X into X1 and X2, corresponding to χ^n and χ^p respectively in Equation (2). We then feed X1 into our first layer dense0 and apply the activation function ReLU to the nodes in this layer using F.relu(). It is important to note that each layer itself is simply a linear combination of inputs and nonlinearity is added via the activation function. The transformed value is reassigned to X1 and continuously fed to the next layer dense1, followed by ReLU activation. The derived nodes from dense1 will then be combined with the auxiliary input X2 at the output layer to obtain our final prediction. Note that, without nonlinear activation attached, this top layer is simply a linear model in X2 and the derived nodes. The auxiliary input X2 thus falls into the linear component of the model.

```python
def forward(self, X, **Kwargs):
    X1, X2 = X[ :, :260], X[ :, 260:]
    X1 = F.relu(self.dense0(X1), inplace=True)
    X1 = F.relu(self.dense1(X1), inplace=True)
    X = torch.cat([X1, X2], 1)
    X = self.output(X)
    return X
```

C.1.3 Training a SDNNs

Now it is time to train the neural network. The original training process in PyTorch requires a fit loop, which typically generates a lot boilerplate code and is incompatible with ORF package. To ease the training process, we leverage the sklearn compatibility provided by Skorch. Skorch offers two main classes, NeuralNetRegressor and NeuralNetClassifier (for regression and class-

4 The dimension of input in the first layer is 260, which equals the number of covariates that assume to have nonlinear relationships with treatment/outcome in Table 1 plus the 1-d target feature (e.g., the number of days to scheduled live day). The input in the top layer is the vector of 1,458 creator, category, and time fixed effects.
fication tasks respectively) that wrap the PyTorch Module while providing an training/evaluation interface similar as sklearn. Since our analysis focuses on regression task, we pass our Pytorch model to NeuralNetRegressor, in conjunction with a PyTorch (-compatible) criterion such as the loss function and optimizer. A sample code is provided in below:

```python
net = NeuralNetRegressor(
    module=MyModule,
    criterion=torch.nn.MSELoss,
    optimizer=torch.optim.Adam,
    lr=0.001, ...
)
net.fit(X, y)
y_pred = net.predict(X_test)
```

We can see that NeuralNetRegressor wraps the PyTorch Module in an sklearn interface. The argument module is where we pass our PyTorch Module. The argument criterion specifies the loss function and is set to PyTorch MSELoss by default when you use the NeuralNetRegressor. More arguments, such as the optimizer and learning rate, etc., can be specified as well. After defining relevant arguments and methods to the wrapper, we could call fit() and predict(), as with an sklearn estimator. To evaluate the neural network model, we could call score() method that returns the coefficient of determination R^2 of the prediction for regressors.

C.2 Execution

To accommodate and streamline customized neural network usage in ORF, we contribute to the main ORF library a PyTorch extension. Our extension module addresses two issues. First, since the main ORF module generally takes Numpy Arrays while neural networks need to be fed with PyTorch Tensors, we perform format transformation when data flowing through the network. Second, although the Skorch wrapper offers fit and predict that looks like sklearn API, it is not fully sklearn-compatible in terms of inputs and outputs dimensionality/shape. We hence reshape input/output flows and apply dimensionality check at each key algorithmic block to guarantee full sklearn compatibility of the customized neural network. Note that Skorch fit() does not support passing sample_weight directly as arguments to fit calls. Instead, we can the sample_weight
with X as a dictionary to the `forward` method and then define your own loss function in Skorch.

The ORF package provides a helper class `WeightedModelWrapper` that enables sample weights functionality, by wrapping any class that supports `fit` and `predict`. Below is an example code of applying the wrapper on SDNNs:

```python
model_T_final = WeightedModelWrapper(
    model_instance=NeuralNetRegressor(MyModule,
    lr=0.001,
    optimizer=torch.optim.Adam,
    optimizer__weight_decay=0.0001),
    sample_type="sampled")
```

The first argument `model_instance` is where we pass our Skorch (-wrapped) model that requires weights. The second argument `sample_type` specifies method for adding weights to the model. For nonlinear model (e.g., neural network and random forest), this argument should be set to `sampled` method, which samples the training set according to the normalized weights and creates a dataset larger than the original. Set this argument to `weighted` for linear regression models where the weights can be incorporated in the matrix multiplication.

After enabling sample weights functionality for our SDNNs, we could now run the full ORF algorithm using the example code below. Since our treatment (i.e., price) is continuous, we call the class `ContinuousTreatmentOrthoForest` to perform ORF estimator. In the first two lines of the class, we specify hyperparameters that controls the tree-growing procedure for the forest kernel learner, in line with description in Section B.1. The following two arguments `model_T` and `model_Y` (for treatment and outcome respectively) are where we pass our semi-parametric DNN to the random forest kernel learner. Note that `model_T` and `model_Y` are used to perform first-stage estimation when placing splits in the tree and no weights will be involved at this tree-growing

5The argument `n_trees` controls how many trees are grown in the random forest. Generally, obtaining high-quality confidence intervals requires growing a large number of trees. The `min_leaf_size` relates to the minimum size a leaf node is allowed to have. Given this parameter, if a node reaches too small of a size during splitting, it will not be split further. The maximum number of splits are specified in the `max_depth` argument. The `subsample_ratio` is a number in range $(0, 1]$ that controls the fraction of samples should be used in growing each tree. As noted in the “honesty” criterion, the fractional subsample will be further split into halves.
stage. The next two arguments model_T_final and model_Y_final are where we pass the semi-parametric DNN that supports sample weights derived from the random forest kernel leaner. After defining relevant arguments and method, we could call fit() to start training. The final treatment effects at every test points can be produced by calling const_marginal_effect(X_test). One can generate confidence intervals to wrap the derived estimates using bootstrap, which has been proven in theory to be asymptotically valid (Oprescu et al., 2018).

```python
from econml.ortho_forest import ContinuousTreatmentOrthoForest
from econml.ortho_forest import WeightedModelWrapper

# Specify hyperparameters
est = ContinuousTreatmentOrthoForest(
    n_trees=500, min_leaf_size=100,
    max_depth=20, subsample_ratio=0.5,
    model_T=NeuralNetRegressor(MyModule,
        optimizer=torch.optim.Adam,
        lr=0.001, optimizer__weight_decay=0.0001),
    model_Y=NeuralNetRegressor(MyModule,
        optimizer=torch.optim.Adam,
        lr=0.001, optimizer__weight_decay=0.0001),
    model_T_final=WeightedModelWrapper(NeuralNetRegressor(MyModule,
        optimizer=torch.optim.Adam, lr=0.001, optimizer__weight_decay=0.0001),
        sample_type="sampled"),
    model_Y_final=WeightedModelWrapper(NeuralNetRegressor(MyModule,
        optimizer=torch.optim.Adam, lr=0.001, optimizer__weight_decay=0.0001),
        sample_type="sampled")
)

est.fit(Y, T, X, W)

# Specify test points on the target feature X (time distance to live day)
X_test = np.linspace(-14, 14, 29).reshape(-1, 1)
treatment_effects = est.const_marginal_effect(X_test)
```

Electronic copy available at: https://ssrn.com/abstract=3878605
D Applying Generalized ORF in Zhihu Live Data

D.1 Parameterization

The random forest kernel learner requires us to select three tuning parameters: the number of trees, the minimum number of observations in each leaf, and the subsample size. In the absence of formal criteria to guide our choices, we used a large number of trees because more trees reduce the Monte Carlo error introduced by subsampling. We found moving from 100 to 500 improved the stability of estimates across samples, but moving from 500 to above does not improve stability significantly. Increasing the minimum number of observations in each leaf trades off bias and variance; bigger leaves make results more consistent across different samples but predict less heterogeneity. Smaller subsamples reduce dependency across trees but increase the variance of each estimate, though we find that increasing subsamples made little difference in our application (Davis and Heller, 2017).

D.2 Specifying Nuisance Functions Using Different Methods

To illustrate the potential gain of using SDNNs to specify nuisance functions relatively to the existing common approaches (i.e., lasso and standard DNNs), we compare their performance in fitting observed (log-transformed) price and demand along a few dimensions, respectively. The lasso includes all the covariates in Table 1 linearly in the nuisance functions. The DNNs is implemented with the MLPRegressor provided in sklearn library, which has a similar architecture to the SDNNs but without the parametric component. We randomly split all the Live-day observations into an in-sample training data set (80%) and a out-sample testing data set (20%).

Table A1 reports the performance results. One can see that the neural neural network-based methods achieve much higher prediction accuracy than lasso in both demand and price equation. The out-sample R^2 and MSE both improve by at least 27%. This suggests that, as we expected, linear functional form cannot fully recover the complex relationships between the large number of covariates and price/demand. Within the two neural network models, DNN achieves slightly higher performance than SDNNs, but it is prone to overfitting (as shown by the discrepancy between the
Table A1: Fitting Comparison across Methods

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>In-Sample</th>
<th>Out-Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R^2</td>
<td>MSE</td>
</tr>
<tr>
<td>Demand Equation</td>
<td>Lasso</td>
<td>0.694</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>DNNs</td>
<td>0.807</td>
<td>0.315</td>
</tr>
<tr>
<td></td>
<td>SDNNs</td>
<td>0.755</td>
<td>0.400</td>
</tr>
<tr>
<td>Price Equation</td>
<td>Lasso</td>
<td>0.783</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>DNNs</td>
<td>0.997</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>SDNNs</td>
<td>0.978</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Note: The average value of log price and log daily sales is 2.89 and 1.50, respectively.

in-sample and out-sample scores of the price equation) and involves higher computational costs (as shown by the time cost on the test set). This is because the DNN naively dump all covariates (including a large number of vector for capturing individual and time fixed effects) into the neural network blackbox, which accommodate non-linear combinations of all covariates in a total flexible manner. In contrast, the SDNN can better balance the trade-offs between prediction accuracy and over-fitting, while is computationally more efficient.
E Supplementary Analysis for Main Results

E.1 Robustness Checks

Figure A4: Temporal Distance Fixed Effects in Consumer Characteristics Regressions

Note: The figures depict the point estimates in the vector of temporal distance fixed effects and the associated 95% confidence intervals. For each regression, the unit of analysis is individual transaction and the number of observations 1,221,103.

Electronic copy available at: https://ssrn.com/abstract=3878605
Figure A5: Price Elasticity over Time to Scheduled Live Day (Excluding Extreme Consumers)

Note: The shaded region depicts 95% confidence interval via 100 bootstrap resamples.