Creatures of habit? Examining navigation strategies across the lifespan

Paulina Maxim, Scott. D. Moffat, Thackery. I. Brown
Georgia Institute of Technology

Study Goals
- Examine the neural dynamics through which future experiences are represented in the brain.
- Understand how prospective thought relies on complex interactions between declarative memory, attention, and cognitive control.
- Test how these contribute to age-related memory deficits lending to difficulties with orienting towards goal locations and planning how to navigate to them.

Background
- The MTL is critical for memories of the past, but also for representing spatial locations, goals, and future events.
- Aging affects the function of the MTL and related circuitry, and critically, aging is associated with behavioral patterns that include avoiding less-familiar routes or locations, difficulty taking shortcuts, and a bias towards navigation based on familiar actions rather than memory for goals, even when such strategies are overtly maladaptive.
- A classic example of this is the Y-maze task.

Method

Older Adults (OA)
- Ages 65-78
- N = 13 (7 MRI)

Young Adults (YA)
- Ages 18-28
- N = 19 (all MRI)

Day 1
- Training on familiar route for 6 different environments (guided + unguided)
- 3-hour duration

Day 2 (24-hours later)
- Testing memory of familiar route (unguided)
- Dual-Solution Paradigm ("probes")
- Inside MRI if eligible

Navigation Probes (Day 2)

"Dual"-Solution task
1. Familiar route
2. Shortcut

"Forward" shortcut
"Backward" shortcut

Frechet Distance Measure* - Mathematical way of describing how one trajectory deviates from another.

What subject did

Optimal shortcut

* "FD" on other panels

Behavioral Results

Route performance remembering familiar route

OA vs. YA (p = .001)

Route performance in Dual-Solution task - YA

YA: Forward vs. Backward (p < .001)

Route performance in Dual-Solution task - OA

OA: Forward vs. Backward (p = .01)

Discussion
- Both age groups prefer to follow the familiar route when given the choice between taking a backward shortcut or traveling along the familiar direction.
- When having to backtrack the environment, OAs are more likely to take a sub-optimal shortcut than YAs, who tend to follow the familiar route more closely.
- OAs underperformed in the initial familiar route memory test, likely due to the higher cognitive demand for remembering the longer route sequence.
- Future analyses aim to examine the neural correlates in the frontal and medial temporal circuitry (e.g., using MVPA to measure use of future-oriented representations to make choices).

References
1. (Squire, Stark, & Clark, 2004)
2. (Brown et al., 2016)
3. (Wikenheiser & Redish, 2015)
4. (McKaslin et al., 2013)
5. (Race, Keane, & Verfaellie, 2011)
6. (Race, Keane, & Verfaellie, 2013)
7. (Hasabisible, Kumaran, & Maguire, 2007)
8. (Schacter & Addis, 2009)
9. (Addis, Wong, & Schacter, 2007)
10. (Horner et al., 2016)
11. (Burns, 1999)
12. (Harris & Wolbers, 2014)
13. (Rodger, Sindone, & Moffat, 2012)