Mechanics Equation Sheet

Think about how to set up the problem first, then apply the needed principles and formulas.

Kinematics
\[v_f = v_0 + at \]
\[v_f^2 = v_0^2 + 2as \]
\[s = v_0t + \frac{1}{2}at^2 \]
\[s = \frac{1}{2}(v_f + v_0)t \]
\[\bar{v} = \frac{\Delta s}{\Delta t} \]
\[a_{avg} = \frac{\Delta v}{\Delta t} \]
\[v_{inst} = \frac{ds}{dt} \]
\[a_{inst} = \frac{dv}{dt} = \frac{d^2s}{d\tau^2} \]
\[\bar{v} = v_x\hat{i} + v_y\hat{j} \]

Rotational Motion
\[\theta = \frac{\bar{r}}{r} \]
\[\omega = \frac{d\theta}{dt} = \frac{v}{r} \]
\[\alpha = \frac{d\omega}{dt} = \frac{a_{tan}}{r} \]
\[\omega = \omega_0 + \alpha t \]
\[\omega^2 = \omega_0^2 + 2\alpha \Delta \theta \]
\[\Delta \theta = \omega_0 t + \frac{1}{2} \alpha t^2 \]
\[a_{rad} = \omega^2 r \]
\[\tau = Fd \sin \theta \]
\[\tau = I\alpha \]
\[K_{total} = \frac{1}{2}m v_{com}^2 + \frac{1}{2}I_{com}\omega^2 \]
\[W = \tau \Delta \theta = \int \tau \, d\theta \]
\[\sum \tau = \frac{dI}{dt} \]
\[L' = r \times \bar{p} = I\bar{\omega} \]
\[L = rmv \sin \theta = I\omega \]

Uniform Circular Motion
\[a_c = a_{rad} = \frac{v^2}{r} \]
\[v = \frac{2\pi r}{T} \]
\[a = \sqrt{a_{rad}^2 + a_{tan}^2} \]
\[F_c = ma_c = \frac{m v^2}{r} \]

Energy and Work
\[K = \frac{1}{2}mv^2 \]
\[U_{grav} = mgh \]
\[U_{spring} = \frac{1}{2}kx^2 \]
\[\sum E_i = \sum E_f \] (conservative)
\[W = \Delta E \]
\[W = \bar{F} \cdot \bar{d} = Fd \cos \theta = \int \bar{F} \cdot d\bar{r} \]
\[F = -\frac{dU}{dx} \]
\[\bar{F} = -\nabla U \]
\[P_{avg} = \frac{\Delta E}{\Delta t} = \frac{W}{\Delta t} \]
\[P = \bar{F} \cdot \bar{v} = Fv \cos \theta \]
\[P = \frac{dE}{dt} \]

Momentum and Impulse
\[\bar{p} = mv \]
\[\sum \bar{p}_i = \sum \bar{p}_f \]
\[\bar{F}_{net} = \frac{\partial \bar{p}}{\partial t} \]
\[J = \Delta \bar{p} = \bar{F}_{avg} \Delta t = \int \bar{F}_{net} \, dt \]

Periodic Motion
\[f = \frac{1}{T} \]
\[\omega = 2\pi f = \frac{2\pi}{T} \]
\[a_x = -\frac{k}{m} \bar{x} \]
\[\omega = \sqrt{\frac{k}{m}} \]
\[x = A \cos(\omega t + \varphi) \]
\[E_{SHM} = \frac{1}{2}kA^2 \]
\[\Delta E_{SHM} = 0 \]
\[\omega_{simp} = \sqrt{\frac{2}{L}} \]
\[\omega_{phys} = \sqrt{\frac{mgd}{I}} \]

Constants
\[g = 9.81 m/s^2 \]
\[c = 2.998 \times 10^8 m/s \]
\[G = 6.67 \times 10^{-11} \frac{N m^2}{kg^2} \]

Scientific Notation Prefixes

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-12}</td>
<td>pico-</td>
<td>p</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano-</td>
<td>n</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro-</td>
<td>µ</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli-</td>
<td>m</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi-</td>
<td>c</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo-</td>
<td>k</td>
</tr>
<tr>
<td>10^6</td>
<td>mega-</td>
<td>M</td>
</tr>
<tr>
<td>10^9</td>
<td>giga-</td>
<td>G</td>
</tr>
</tbody>
</table>