1. (10 points) Suppose S is a nonempty and bounded subset of \mathbb{R}. Show that

$$\inf(S) = -\sup(-S)$$
2. (10 points)

Suppose \((s_n)\) and \((t_n)\) are convergent sequences in \(\mathbb{R}\) with \(s_n \to s\) and \(t_n \to t\). Show using the definition of a limit that

\[
\lim_{n \to \infty} s_n - t_n = s - t
\]
3. \((10 = 8+2 \text{ points}) \)

(a) Show that if \((s_n) \) is a bounded sequence in \(\mathbb{R} \) and \(k \geq 0 \), then

\[
\limsup_{n \to \infty} ks_n = k \left(\limsup_{n \to \infty} s_n \right)
\]

(b) Is the same result true if you replace \(k \geq 0 \) by \(k \in \mathbb{R} \)?
4. (10 = 4 + 4 + 2 points) Let (S,d) be a metric space

(a) Show that the union of any number of open subsets of S is open

(b) Show that the intersection of finitely many open subsets of S is open

(c) Is the intersection of infinitely many open subsets of S always open?

Suggestion: I *highly* recommend also checking out the metric space problems on Mock Midterm 2.
5. (10 points) Prove the integral test in the case of

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
6. (10 points) Suppose f is a continuous function on $(-1, 1)$ that satisfies $f(x^2) = f(x)$ for all x. Show that f is constant.

Hint: Show that $f(x) = f(0)$ for all x. For this, calculate $f(x^4), f(x^8)$, and, more generally, $f(x^{2^n})$ for $n \geq 0$.

7. (10 points) Suppose $y \geq 0$ is given. Show that there is a unique $x \geq 0$ such that $y = x^2$.
8. (10 points) Show directly, using the definition of uniform continuity that \(f(x) = x^2 \) is not uniformly continuous on \([0, \infty)\)

Hint: This is similar to (but easier than) Example 3 in Lecture 27. Let \(\epsilon > 0 \) be TBA and fix \(\delta \). Let \(a = |x - y| \) and assume \(x < y \).