Reading: Sections 18 and 19. In section 19, ignore Discussion 19.3 with the integrals.

- **Section 18:** 9, 10, 12, AP1 (Optional: AP2, AP3, AP4, AP5, AP6, AP7, AP8, AP9, AP10)

- **Section 19:** 2, 4, 5, 6, 7, 8, 9, 11

Additional Problem 1: Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous and $f(f(f(x))) = x$ for all x, then $f(x) = x$.

Note: The Optional Additional Problems are on the next page. They discuss (among other things) the concept of a homeomorphism. You may have heard of the expression *A coffee cup is like a donut.* That has to do with homeomorphisms.

CONGRATULATIONS!!! You are now officially done with the homework! Words cannot express how proud I am of you, this was no easy task at all, but you’ve reigned supreme 😊

Date: Due: Thursday, June 4, 2020.
Definition:
Let E be any subset of \mathbb{R} (or of any metric space)

1. E is **disconnected** if there are disjoint, nonempty, and open subsets A and B of E such that $A \cup B = E$
2. E is **connected** if it is not disconnected

For example, \mathbb{R} is connected but $(0, 1) \cup (2, 3)$ is disconnected

Optional Additional Problem 2: Use the hints to give a 2-line proof of the Intermediate Value Theorem: If $f : [a, b] \to \mathbb{R}$ is continuous and c is between $f(a)$ and $f(b)$, then there is $x \in [a, b]$ with $f(x) = c$. Isn’t connectedness awesome?

Optional Additional Problem 3: Suppose E is connected and $f : E \to \mathbb{R}$ is continuous, prove that $f(E)$ is connected.

Optional Additional Problem 4: Prove that \mathbb{R} is connected (see hints) (More generally, it follows that any interval I is connected)

Definition:
Let E be any subset of \mathbb{R} (or of any metric space)

1. A path in E is a continuous function $\gamma : [0, 1] \to E$
2. E is **path-connected** if for any pair of points a and b in E, there is a path γ with $\gamma(0) = a$ and $\gamma(1) = b$

Optional Additional Problem 5:

(a) Show that if E is path-connected, then it is connected
(b) Show \mathbb{R} is path-connected and deduce that it is connected.

Optional Additional Problem 6: The topologist’s sine curve is defined as

$$E = F \cup G =: \left\{ \left(x, \sin \left(\frac{1}{x} \right) \right) \mid x \in (0, 1) \right\} \cup \{0\} \times [-1, 1]$$

Show that E is connected but not path-connected.

Optional Additional Problem 7: Use the result of AP7(a) in HW9 and AP2 in HW7 to give a quick proof of the Extreme Value Theorem: If K is a compact subset of \mathbb{R} and $f : K \to \mathbb{R}$ is continuous, then f attains a maximum and a minimum
Definition:

Let A and B be two subsets of \mathbb{R} (or any two metric spaces) and $f : A \rightarrow B$ is a function, then:

(a) f is a **homeomorphism** if f is continuous, one-to-one, onto, and f^{-1} is continuous

(b) A and B are **homeomorphic** if there is a homomorphism between A and B

(c) A **topological property** is a property that is preserved under homeomorphisms

Optional Additional Problem 8:

(a) Show that there is a homeomorphism between $(0, 1)$ and \mathbb{R}. So surprisingly $(0, 1)$ and \mathbb{R} are homeomorphic

(b) Deduce that boundedness is not a topological property.

Optional Additional Problem 9:

(a) Show that if $f : I \rightarrow f(I)$ is continuous and one-to-one, then f is a homeomorphism

(b) Show that if K is covering compact and $f : K \rightarrow f(K)$ is continuous and one-to-one, then f is a homeomorphism

(c) Let S^1 be the unit circle in \mathbb{R}^2. Consider the map $f : [0, 2\pi) \rightarrow S^1$ by $f(t) = (\cos(t), \sin(t))$. You may assume that f is continuous, one-to-one, and onto. Show that f^{-1} is not continuous and hence not a homeomorphism.

Optional Additional Problem 10:
(a) Show that homeomorphisms map compact sets onto compact sets. Hence compactness is a topological property. Deduce that $[0, 1]$ and \mathbb{R} are not homeomorphic.

(b) Show that homeomorphisms map connected sets onto connected sets. So connectedness is a topological property. Deduce that $[0, 2\pi]$ and the unit circle S^1 in \mathbb{R}^2 are not homeomorphic.

(c) Show openness and closedness are topological properties. Deduce that $(0, 1)$ and $[0, 1]$ (considered as subsets of \mathbb{R}) are not homeomorphic.
Hints:

18.9 Let \(f(x) = a_0 + a_1 x + \cdots + a_n x^n \). WLOG, we may assume \(a_n > 0 \). Since \(f \) goes to \(\infty \) as \(x \) goes to \(\infty \), there is \(b > 0 \) large enough such that \(f(b) > 0 \), and since \(f \) goes to \(-\infty \) as \(x \) goes to \(-\infty \), there is \(a < 0 \) such that \(f(a) < 0 \). There is no need to prove those statements since we haven’t defined limits yet. The book’s hint is a bit confusing in my opinion.

18.10 Argue in cases, if \(f(1) > f(0) \) or \(f(1) = f(0) \) or \(f(1) < f(0) \)

18.12 Suppose \(a < b \), then if \(0 < a < b \), then since \(f \) is continuous on \([a, b]\) we can just apply the IVT, and similarly if \(a < b < 0 \), so the interesting case is \(a \leq 0 \leq b \). WLOG, assume \(b > 0 \). It might be helpful to solve for \(\sin \left(\frac{1}{x} \right) = 1 \) and \(\sin \left(\frac{1}{x} \right) = -1 \)

19.4(a) By “assume not”, the book means that there is a sequence \((x_n)\) in \(S \) such that \(|f(x_n)| \to \infty \). Remember that Cauchy sequences are bounded.

19.6(a) Use that \(f(x) = \sqrt{x} \) is continuous on \([0, \infty)\), hence uniformly continuous on \([0, 1]\) (which is compact)

19.9 You don’t need to reprove the result in \((a)\). As far as \((b)\) is concerned, if \(S \) is bounded, notice that \(\overline{S} \) (the closure of \(S \)) is closed and bounded in \(\mathbb{R} \) and therefore compact. Then use Theorem 19.2. For \((c)\), don’t be discouraged; it’s not as tricky as the book makes it seem. You don’t need to reprove why it suffices to show that \(f \) is uniformly continuous on \((-\infty, 1]\) and \([1, \infty)\) since you’ve already done this in 19.7(a), but please show that \(f \) is uniformly continuous on \([1, \infty)\) (the other part is similar).
19.11 Again, no need to reprove that why it suffices to show that \(f \) is uniformly continuous on \((-\infty, 1]\) and \([1, \infty)\) since you’ve already done this in 19.7(a), but please show that \(f \) is uniformly continuous on \([1, \infty)\) (the other part is similar).

AP 1: First show that \(f \) must be one-to-one. For this suppose \(f(x) = f(y) \) and apply \(f \) twice to this equation. Therefore, \(f \) must be increasing or decreasing. But if \(f \) is decreasing, suppose \(x < y \) and apply \(f \) three times to get a contradiction. Hence \(f \) is increasing. Now if \(f(x) \neq x \) for some \(x \), then either \(f(x) > x \) or \(f(x) < x \). In both cases, apply \(f \) twice to get a contradiction.

Note: You can find solutions to this problem in the following video: Press fff to pay respects

AP 2: Suppose \(f : [a, b] \rightarrow \mathbb{R} \) is continuous but there is \(c \) such that \(f(x) \neq c \) for all \(c \). Then consider the sets:

\[
A = \{ x \in [a, b] \mid f(x) < c \} = f^{-1}((-\infty, c))
\]
\[
B = \{ x \in [a, b] \mid f(x) > c \} = f^{-1}((c, \infty))
\]

For this, use the awesome definition of continuity in HW9, as well as AP6 in HW 9. You may assume that \([a, b]\) is connected

Note: Even though the sets are not open in \(\mathbb{R} \), they are open in \([a, b]\)

AP 3: Suppose not, and consider \(f^{-1}(A \cup B) \). For this, use the awesome definition of continuity in HW9, as well as AP6 in HW 9

AP 4:
Suppose \(\mathbb{R} \) is not connected. Then we can write \(\mathbb{R} = A \cup B \) with \(A, B \) nonempty, open and disjoint.

STEP 1: Since \(A \) and \(B \) are nonempty, fix \(a \in A \) and \(b \in B \). WLOG \(a < b \) and let

\[
S = \{ x \in [a, b] \mid [a, x] \subseteq A \}
\]

Show \(S \) has a least upper bound \(M =: \sup(S) \)

STEP 2:

Claim: \(M \notin B \)

Suppose \(M \in B \). Then since \(B \) is open, there is \(r > 0 \) such that \((M - r, M + r) \subseteq B\).

Use the definition of \(S \) to conclude that \(M \notin B \) and conclude that \(M \in A \)

STEP 3: Moreover \(M \in S \), because if \(M \notin S \), then \([a, M]\) \(\not\subseteq A \), meaning there is \(x \in [a, M] \) with \(x \notin A \). But since \(M \in A \), we have \(x < M = \sup(S) \) and therefore there is \(y \in S \) with \(y > x \).

Find a contradiction

STEP 4: Show \(M < b \). For this, assume \(b \leq M \) and show that \(b \in A \)

STEP 5:

Claim: \(M \notin A \)
Suppose $M \in A$, then, since A is open, there is $r' > 0$ such that $(M - r', M + r') \subseteq A$. Let $M' = \min \{M + r', b\}$

Then $M' > M$, and so $M' \notin S$ because $M = \sup(S)$.

Therefore, by definition of S, $[a, M'] \not\subseteq A$, so there is some $x \in [a, M']$ with $x \notin A$. But since $[a, M] \subseteq A$ (because $M \in S$), we must have $x \in (M, M']$.

Show $x \in A$ and find a contradiction, and conclude that \mathbb{R} must be connected

AP 5: Suppose E is path-connected but not connected. Pick $a \in A$ and $b \in B$, and consider $\gamma^{-1}(A)$ and $\gamma^{-1}(B)$

AP 6: Hints to be posted this week-end 😊

AP 7:

Proof that E is connected: First notice that $\overline{F} = E$ and show the following, more general result (which is true in any metric space)

Claim: If F is connected subset of \mathbb{R}^2, then \overline{F} is connected

For this, notice that the result is true of $F = \emptyset$, so assume $F \neq \emptyset$, suppose F is connected but \overline{F} is not connected. Then there are open nonempty disjoint subsets A and B of \overline{F} such that $A \cup B = \overline{F}$.

Consider $A' = A \cap F$ and $B' = B \cap F$.

Show WLOG, assume $A' = F$ and $B' = \emptyset$
Notice that, since $A^c = B$ is open (the complement here is in \overline{F}) we get A is closed in \overline{F}

Now by definition of A closed in \overline{F}, there is some closed subset C of \mathbb{R}^2 with $A = C \cap \overline{F}$ (we haven’t covered relative closedness in the course, so take that as a given)

Use the definition of \overline{F} to conclude that $A = \overline{F}$ and find a contradiction.

Proof that E is not path-connected: Suppose not, then in particular is there is $\gamma : [0, 1] \to E$ with $\gamma(0) \in F$ and $\gamma(1) \in G$.

Why is it ok to assume that $\gamma(1) = (0, 1)$?

Let $\epsilon = \frac{1}{2}$, then by continuity of γ at 1, there is $\delta > 0$ such that

If $|t - 1| \leq \delta \Rightarrow 1 - \delta \leq t \leq 1$, then

$$|\gamma(t) - \gamma(1)| < \frac{1}{2} \Rightarrow |\gamma(t) - (0, 1)| < \frac{1}{2}$$

(Note: Here the absolute value for γ is just the usual distance in \mathbb{R}^2. Also the $\leq \delta$ isn’t really a problem)

Let $\gamma(1 - \delta) =: (x_0, y_0)$ and remember that $\gamma(1) = (0, 1)$

Use the Intermediate Value Theorem to show that $\gamma_1([1 - \delta, 1])$ contains the interval $[0, x_0]$, where $\gamma = (\gamma_1, \gamma_2)$

Hence for all $x_1 \in (0, x_0]$ there is some t with $\gamma_1(t) = x_1$ and therefore, by definition, there is $t \in [1 - \gamma, 1]$ such that
\[\gamma(t) = (\gamma_1(t), \gamma_2(t)) = (x_1, \sin \left(\frac{1}{x_1} \right)) \]

Find \(x_1 \) such that \(0 < x_1 < x_0 \), but \(\sin \left(\frac{1}{x_1} \right) = \sin \left(-\frac{\pi}{2} \right) = -1 \)

Conclude that the \(t \) you found is a distance of \(\frac{1}{2} \) away from \((0,1)\) and find a contradiction.

AP 8: Your solution might involve \(\tan^{-1} \)

AP 9(a): It’s one of the theorems in lecture

AP 9(b): All you need to check is that \(f^{-1} \) is continuous. For this, show that it’s enough to show that whenever \(C \) is closed, then \(f(C) \) is closed. It might also be useful to show that \((f^{-1})^{-1}(C) = f(C)\) (that is the preimage of \(C \) when you apply \(f^{-1} \) to is \(f(C) \)). Now if \(C \) is a closed subset of a compact set, it is compact, and then use the result of AP7 in HW9.

AP 9(c): Find a sequence \((x_n) \) of points on the circle that converges to \(f(0) = (1,0) \) but such that \(f^{-1}(x_n) \) converges to \(\frac{\pi}{2} \)

AP 10(b): Even though \([0,2\pi]\) and \(S^1 \) are connected, what happens if you remove 1 from \([0,2\pi]\), is it still connected? What if you remove a point from \(S^1 \)?