LECTURE 25: PROPERTIES OF CONTINUOUS FUNCTIONS (I)

Today: We'll prove two of the three Value Theorems used in Calculus: The Extreme Value Theorem and the Intermediate Value Theorem. The Mean Value Theorem will be proven in Math 140B.

Note: To give you a break, today we will not use any ϵ and $\delta \odot$

1. Bounded Functions

Video: Bounded Functions
As a warm-up, let's show that continuous functions are bounded

```
Defintion:
\(f\) is bounded if there is \(M>0\) such that for all \(x,|f(x)| \leq M\)
```

(This is similar to the definition of sequences being bounded)

In other words, a bounded function is trapped between $-M$ and M, whereas an unbounded function always goes outside of $[-M, M]$, no matter how large M is.

Fact:

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is bounded

Proof: Suppose not. Then for all $n \in \mathbb{N}$ (using the above with $M=n$) there is some $x_{n} \in[a, b]$ with $\left|f\left(x_{n}\right)\right|>n$.

Since $x_{n} \in[a, b]$, the sequence $\left(x_{n}\right)$ is bounded.
Therefore, by Bolzano-Weierstraß, $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$ that converges to some $x_{0} \in[a, b]$.

Since $x_{n_{k}} \rightarrow x_{0}$ and f is continuous, we have $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$ and so $\left|f\left(x_{n_{k}}\right)\right| \rightarrow\left|f\left(x_{0}\right)\right|$

On the other hand, since $\left|f\left(x_{n}\right)\right|>n$ for all n, we have $\left|f\left(x_{n}\right)\right| \rightarrow \infty$. In particular this is true for the subsequence $f\left(x_{n_{k}}\right)$, and therefore $\left|f\left(x_{n_{k}}\right)\right| \rightarrow \infty$ as well.

Comparing the two, we get $\left|f\left(x_{0}\right)\right|=\infty$, which is absurd $\Rightarrow \Leftarrow$

2. The Extreme Value Theorem

Video: The Extreme Value Theorem
The Extreme Value Theorem is of the unsung heroes in Calculus. It says that any continuous function f on $[a, b]$ must have a maximum and minimum. Without this, optimization problems would be impossible to solve!

Defintion:

f has a maximum on $[a, b]$ if there is $x_{0} \in[a, b]$ such that $f\left(x_{0}\right) \geq$ $f(x)$ for all $x \in[a, b]$
(Similarly for minimum)

Important: By definition, the maximum has to be attained. In other words, there must be some x_{0} such that $f\left(x_{0}\right)$ is that maximum!

Non-Example: $f(x)=x^{2}$ has no maximum on $(0,2)$ because if it did, the maximum would be 4 , but there is no x_{0} in $(0,2)$ with $f\left(x_{0}\right)=4$

Extreme Value Theorem:

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f has a maximum and a minimum on $[a, b]$

First, let's prove a Useful Lemma that will be useful both here and for the Intermediate Value Theorem:

Useful Lemma:

If S is a subset of \mathbb{R} with $\sup (S)=: M<\infty$, then there is a sequence $\left(s_{n}\right)$ in S that converges to M

In other words, there is always a train with destination $\sup (S)$. That is, you can always reach $\sup (S)$ with a sequence. In other words, $\sup (S)$ isn't such an abstract concept any more, we can attain it through sequences!

Proof of Useful Lemma: For every $n \in \mathbb{N}$, consider $M-\frac{1}{n}<$ $M=\sup (S)$. Therefore by definition of sup, for every n there is some $s_{n} \in S$ with $M-\frac{1}{n}<s_{n} \leq M$, but then by the squeeze theorem, we have $s_{n} \rightarrow M$

Proof of the Extreme Value Theorem:

Note: It's enough to show that f has a maximum, since we can repeat the same proof with $-f$ instead of f (since $-f$ has a maximum whenever f has a minimum, and vice-versa)

STEP 1: Since f is continuous on $[a, b], f$ is bounded, so there is C such that $|f(x)| \leq C$ for all x.

Consider the set

$$
S=\{f(x) \mid x \in[a, b]\}
$$

Since f is bounded, S is bounded (by C), and therefore S has a least upper bound $\sup (S)=: M$

STEP 2: By the Useful Lemma above, there is a sequence $y_{n} \in S$ with $y_{n} \rightarrow M$

Since $y_{n} \in S$, by definition of S we have $y_{n}=f\left(x_{n}\right)$ for some $x_{n} \in[a, b]$
Since $x_{n} \in[a, b],\left(x_{n}\right)$ is bounded. Therefore, by the Bolzano-Weierstraß theorem, $\left(x_{n}\right)$ has a convergent subsequence $x_{n_{k}} \rightarrow x_{0}$ for some $x_{0} \in$ $[a, b]$

Since $x_{n_{k}} \rightarrow x_{0}$ and f is continuous, we have $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$
On the other hand, $f\left(x_{n}\right)=y_{n} \rightarrow M$ (by definition of y_{n}). In particular, the subsequence $f\left(x_{n_{k}}\right)=y_{n_{k}} \rightarrow M$ as well.

Comparing the two, we get $f\left(x_{0}\right)=M$

STEP 3:

Claim: f has a maximum

This follows because for all $x \in[a, b]$

$$
f\left(x_{0}\right)=M=\sup \{f(x) \mid x \in[a, b]\} \geq f(x)
$$

And therefore $f\left(x_{0}\right) \geq f(x)$ for all $x \in[a, b]$
Note: The same result holds if you replace $[a, b]$ by any compact set. Check out this video if you're interested: Continuity and Compactness

3. The Intermediate Value Theorem

Video: Intermediate Value Theorem
Let's now discuss the second Value Theorem of Calculus: The Intermediate Value Theorem. It says that if f is continuous, then f attains all the values between $f(a)$ and $f(b)$:

Intermediate Value Theorem:

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if c is any number between $f(a)$ and $f(b)$, then there is some $x \in[a, b]$ such that $f(x)=c$

Note: There are functions f that are not continuous, but that satisfy the intermediate value property above.

Example: (see HW)

$$
f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Discontinuous at 0 but satisfies the intermediate value property

(Graph courtesy Desmos)

Proof:

STEP 1: WLOG, assume $f(a)<c<f(b)$
(If $c=f(a)$, let $x=a$, and if $c=f(b)$, let $x=b$. And if $f(b)<f(a)$, apply the result with $-f$)

Since $f(a)<c$, let's consider

$$
S=\{x \in[a, b] \mid f(x)<c\}
$$

Then $S \neq \emptyset$ (since $a \in S$) and S is bounded above (by b), therefore S has a least upper bound $\sup (S)=: x_{0}$

Claim: $f\left(x_{0}\right)=c$
We will do this by showing $f\left(x_{0}\right) \leq c$ and $f\left(x_{0}\right) \geq c$
STEP 2: Show $f\left(x_{0}\right) \leq c$
By the Useful Lemma from above, there is a sequence $\left(x_{n}\right)$ in S with $x_{n} \rightarrow x_{0}$. Therefore, since f is continuous, we get $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

But since $x_{n} \in S$, by definition of S, we have $f\left(x_{n}\right)<c$, and therefore

$$
f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \leq c \checkmark
$$

STEP 3: Show $f\left(x_{0}\right) \geq c$
First of all, we have $x_{0} \neq b$ because $f\left(x_{0}\right) \geq c$ whereas $f(b)>c$, so x_{0} and b cannot be equal. Therefore $x_{0}<b$.

Since $x_{0}<b$, for n small enough, we have $t_{n}=: x_{0}+\frac{1}{n}<b$. By definition $t_{n} \in[a, b], t_{n}>x_{0}$ and $t_{n} \rightarrow x_{0}$.

Since $t_{n} \rightarrow x_{0}$ and f is continuous, we have $f\left(t_{n}\right) \rightarrow f\left(x_{0}\right)$
Moreover, since $t_{n}>x_{0}$ and $x_{0}=\sup (S)$, we must have $t_{n} \notin S$, meaning that (by definition of S), $f\left(t_{n}\right) \geq c$.

Therefore, we get

$$
f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f\left(t_{n}\right) \geq c \checkmark
$$

Combining STEP 2 and STEP 3, we get $f\left(x_{0}\right)=c$
Note: The same result holds if you replace $[a, b]$ by any connected set. Connected intuitively just means that the set just had one piece. For instance $[a, b]$ is connected but $[0,1] \cup[2,3]$ is disconnected; it has two pieces.

Connected

Disconnected
4. Image of an interval

Video: Image of an interval
Because the Intermediate Value Theorem, it is interesting to figure out what happens when you apply a function to an interval.

Notation:

I denotes an interval, such as $I=(0,1)$ or $[1,2)$ or $[2,3]$ or $(3, \infty)$ or even \mathbb{R}

Definition:

If I is an interval then the image of f of I (or the range of f) is

$$
f(I)=\{f(x) \mid x \in I\}
$$

For general $f, f(I)$ could be some crazy set (think a fractal or the Cantor set), but it turns out that if f is continuous, then $f(I)$ is very nice:

Fact:

If f is continuous, then $f(I)$ is an interval (or a single point)

Example 1:

If $f(x)=x^{2}$ and $I=(-2,2)$ then

$$
f(I)=\left\{x^{2} \mid x \in(-2,2)\right\}=[0,4)
$$

Beware: Even though $(-2,2)$ is open, $f((-2,2))$ isn't necessarily open!

Example 2:

If $f(x) \equiv 3$ and I is any nonempty interval, then

$$
f(I)=\{3\}
$$

Proof: Let $J=: f(I)$ and let $m=: \inf (J)$ and $M=: \sup (J)$

Case 1: $m=M$, then $J=\{m\}$ is a single point \checkmark
Case 2: $m<M$.

Claim: J contains the interval (m, M)

Then we would be done because we would then have either $J=(m, M)$ or $J=[m, M)$ or $J=(m, M]$ or $J=[m, M]$, depending on whether or not $m=\inf (J)$ and $M=\sup (J)$ are in J or not (here the endpoints
may be infinite).
Proof of Claim: Let $c \in(m, M)$, and show $c \in J$.
By assumption $m<c<M$. Since $c>m=\inf (J)$, by definition of \inf, there is $y_{0} \in J$ such that $y_{0}<c$, and since $c<M=\sup (J)$, there is $y_{1} \in J$ such that $c<y_{1}$.

Therefore we get $y_{0}<c<y_{1}$.

Since $y_{0} \in J=f(I)$, by definition of $f(I)$, there is $a \in I$ such that $y_{0}=f(a)$. Similarly there is $b \in I$ such that $y_{1}=f(b)$.

Since f is continuous and c is between $f(a)$ and $f(b)$, by the Intermediate Value Theorem, there is x between $a \in I$ and $b \in I$ (so $x \in I$ since I is an interval) such that $f(x)=c$, but this means that $c \in f(I)=J$ \checkmark

