LECTURE 25: PROPERTIES OF CONTINUOUS
FUNCTIONS (I)

Today: We'll prove two of the three Value Theorems used in Calculus:
The Extreme Value Theorem and the Intermediate Value Theorem.
The Mean Value Theorem will be proven in Math 140B.

Note: To give you a break, today we will not use any ¢ and § ®

1. BOUNDED FUNCTIONS

Video: Bounded Functions

As a warm-up, let’s show that continuous functions are bounded

f is bounded if there is M > 0 such that for all z, |f(z)| < M

(This is similar to the definition of sequences being bounded)

Date: Wednesday, May 27, 2020.


https://youtu.be/XFFeKkC8Gg4
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f(x) / y

-M -M

Bounded Not Bounded

In other words, a bounded function is trapped between —M and M,
whereas an unbounded function always goes outside of [—M, M], no
matter how large M is.

If f:[a,b] — R is continuous, then f is bounded

Proof: Suppose not. Then for all n € N (using the above with M = n)
there is some z,, € [a,b] with |f(z,)| > n.
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N f(xn)
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Since x,, € [a,b], the sequence (x,) is bounded.

Therefore, by Bolzano-Weierstra$, (z,,) has a convergent subsequence
(xp,) that converges to some xg € [a, b].

Since z,, — zp and f is continuous, we have f(x, ) — f(x¢) and so
[ (@) = [f (o)

On the other hand, since |f(z,)| > n for all n, we have |f(z,)| — occ.
In particular this is true for the subsequence f(x,,), and therefore

| f(zp,)] — oo as well.

Comparing the two, we get | f(zg)| = oo, which is absurd =<« O

2. THE EXTREME VALUE THEOREM
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Video: The Extreme Value Theorem

The Extreme Value Theorem is of the unsung heroes in Calculus. It
says that any continuous function f on [a,b] must have a maximum
and minimum. Without this, optimization problems would be impos-
sible to solve!

f has a maximum on [a, b] if there is xy € [a, b] such that f(z() >
f(z) for all z € [a, b]

(Similarly for minimum)

N

f(xo)

Important: By definition, the maximum has to be attained. In other
words, there must be some xy such that f(z() is that maximum!


https://youtu.be/-cCWT8nUTv0
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Non-Example: f(x) = z? has no maximum on (0, 2) because if it did,
the maximum would be 4, but there is no z¢ in (0,2) with f(xy) = 4

4 (not attained)

f(x) = x2

MO

Extreme Value Theorem:

Suppose f : [a,b] — R is continuous, then f has a maximum and
a minimum on [a, b]

f(x)

A4

o od————— -
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First, let’s prove a Useful Lemma that will be useful both here and for
the Intermediate Value Theorem:

Useful Lemma:

If S is a subset of R with sup(S) =: M < oo, then there is a
sequence (s,) in S that converges to M

Sn M = sup(S)
e} = s e

In other words, there is always a train with destination sup(S). That is,
you can always reach sup(S) with a sequence. In other words, sup(95)
isn’t such an abstract concept any more, we can attain it through se-
quences!

Proof of Useful Lemma: For every n € N, consider M — % <
M = sup(S). Therefore by definition of sup, for every n there is some
S, € S with M — % < s, < M, but then by the squeeze theorem, we
have s,, - M ]
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Proof of the Extreme Value Theorem:
Note: It’s enough to show that f has a maximum, since we can re-
peat the same proof with —f instead of f (since —f has a maximum

whenever f has a minimum, and vice-versa)

STEP 1: Since f is continuous on [a,b], f is bounded, so there is C
such that |f(z)| < C for all x.

Consider the set

A4

|
|
|
|
|
|
&
b
Since f is bounded, S is bounded (by C), and therefore S has a least
upper bound sup(S) =: M

STEP 2: By the Useful Lemma above, there is a sequence y, € S
with vy, — M
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4

Since y,, € S, by definition of S we have y,, = f(z,,) for some z,, € [a, b]
Since x,, € [a, b], (z,,) is bounded. Therefore, by the Bolzano-Weierstra$i
theorem, (z,,) has a convergent subsequence x,, — x( for some xy €
[, b]

Since x,, — o and f is continuous, we have f(z,,) — f(z0)

On the other hand, f(x,) =y, — M (by definition of y,). In particu-
lar, the subsequence f(x,,) = yn, — M as well.

Comparing the two, we get f(xg) = M

STEP 3:
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Claim: f has a maximum

This follows because for all = € [a, 0]

flxo) = M = sup {f(x) | © € [a,b]} = f(x)

And therefore f(xy) > f(x) for all z € [a, D] O

Note: The same result holds if you replace [a, b] by any compact set.
Check out this video if you're interested: Continuity and Compactness

3. THE INTERMEDIATE VALUE THEOREM

Video: Intermediate Value Theorem

Let’s now discuss the second Value Theorem of Calculus: The Inter-

mediate Value Theorem. It says that if f is continuous, then f attains
all the values between f(a) and f(b):

Intermediate Value Theorem:

If f:[a,b] - R is continuous and if ¢ is any number between
f(a) and f(b), then there is some x € [a, b] such that f(x) = c



https://youtu.be/6Ql6TpnpwDE
https://youtu.be/wG6AaRjH7ck
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f(b) p-—————

c=1(x)¢

f(a) ——— |

:
a

S S

O 4 —=

Note: There are functions f that are not continuous, but that satisfy
the intermediate value property above.

Example: (see HW)

B sin(%) if © #0
f(x){o if 2 = 0

Discontinuous at 0 but satisfies the intermediate value property
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y = sin(1/x)
\

(Graph courtesy Desmos)
Proof:
STEP 1: WLOG, assume f(a) < ¢ < f(b)

(If ¢ = f(a), let z = a, and if ¢ = f(b), let = b. And if f(b) < f(a),
apply the result with — f)

f(a)

f(b)
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Since f(a) < ¢, let’s consider

S={xe€lab]]| f(z) <c}

Then S # () (since a € S) and S is bounded above (by b), therefore S
has a least upper bound sup(S) =: x

f(b) ¢

Claim: f(z9) =c¢

We will do this by showing f(z¢) < ¢ and f(z9) > ¢
STEP 2: Show f(xg) <c¢

By the Useful Lemma from above, there is a sequence (z,) in S with
x, — xo. Therefore, since f is continuous, we get f(x,) — f(zo).
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But since z,, € S, by definition of S, we have f(z,) < ¢, and therefore

flao) = lim f(r,) < e

STEP 3: Show f(zg) > ¢

First of all, we have xy # b because f(z¢) > ¢ whereas f(b) > ¢, so xg
and b cannot be equal. Therefore g < b.

1

S XO th = o + —

< ® = ® n
a <— b

Since xg < b, for n small enough, we have t,, =: x¢ + % < b. By defini-
tion ¢, € [a,b], t, > zo and t, — x.
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f(b) -

Since t,, — o and f is continuous, we have f(t,) — f(x¢)

Moreover, since t, > xg and xg = sup(S), we must have t,, ¢ S, mean-
ing that (by definition of S), f(¢,) > c.

Therefore, we get

f(xO) = lim f(tn) > Y

n—oo

Combining STEP 2 and STEP 3, we get f(z¢) = ¢ O

Note: The same result holds if you replace [a, b] by any connected set.
Connected intuitively just means that the set just had one piece. For
instance [a, b] is connected but [0, 1] U [2, 3] is disconnected; it has two
pieces.
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a b O 1 2 3
Connected Disconnected

4. IMAGE OF AN INTERVAL

Video: Image of an interval

Because the Intermediate Value Theorem, it is interesting to figure out
what happens when you apply a function to an interval.

I denotes an interval, such as I = (0,1) or [1,2) or [2, 3] or (3, o)
or even R

If I is an interval then the image of f of I (or the range of f) is

fU) ={f(x) |z eI}


https://youtu.be/UOeqID3pWCo
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v

For general f, f(I) could be some crazy set (think a fractal or the
Cantor set), but it turns out that if f is continuous, then f(I) is very
nice:

If f is continuous, then f([) is an interval (or a single point)

If f(x) = 2% and I = (—2,2) then

fI)={2" |z € (-2,2)} =[0,4)
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f(x) =x2

Beware: Even though (—2,2) is open, f((—2,2)) isn’t necessarily
open!

If f(z) =3 and [ is any nonempty interval, then

fI) = {3}

¥
w

(1)

A4
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Proof: Let J =: f(I) and let m =: inf(J) and M =: sup(J)

Case 1: m = M, then J = {m} is a single point v/

Case 2: m < M.

Claim: J contains the interval (m, M)

m (m,M) M
J = o 0
? ?

Then we would be done because we would then have either J = (m, M)
or J=[m,M)or J=(m, M]or J=|m,M], depending on whether or
not m = inf(J) and M = sup(J) are in J or not (here the endpoints
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may be infinite).
Proof of Claim: Let ¢ € (m, M), and show ¢ € J.
By assumption m < ¢ < M. Since ¢ > m = inf(J), by definition of

inf, there is yy € J such that yy < ¢, and since ¢ < M = sup(J), there
is y1 € J such that ¢ < ;.

m Yo C C Y1 M
O = ° - ° O
inf sup

Therefore we get yy < ¢ < y.

m Yo C V1 M
O s . o '®)
inf sup

Since yp € J = f(I), by definition of f(I), there is a € I such that
yo = f(a). Similarly there is b € I such that y; = f(b).
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J M f

V1= f(b) *— —
C

yo = f(a)

- -

|
|
|
®
a xDb

Since f is continuous and c¢ is between f(a) and f(b), by the Intermedi-
ate Value Theorem, there is = between a € I and b € I (so z € [ since
I is an interval) such that f(x) = ¢, but this means that c € f(I) = J
v O
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