
LECTURE 25: PROPERTIES OF CONTINUOUS
FUNCTIONS (I)

Today: We’ll prove two of the three Value Theorems used in Calculus:
The Extreme Value Theorem and the Intermediate Value Theorem.
The Mean Value Theorem will be proven in Math 140B.

Note: To give you a break, today we will not use any ε and δ ,

1. Bounded Functions

Video: Bounded Functions

As a warm-up, let’s show that continuous functions are bounded

Defintion:

f is bounded if there is M > 0 such that for all x, |f(x)| ≤M

(This is similar to the definition of sequences being bounded)

Date: Wednesday, May 27, 2020.
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https://youtu.be/XFFeKkC8Gg4
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In other words, a bounded function is trapped between −M and M ,
whereas an unbounded function always goes outside of [−M,M ], no
matter how large M is.

Fact:

If f : [a, b]→ R is continuous, then f is bounded

Proof: Suppose not. Then for all n ∈ N (using the above with M = n)
there is some xn ∈ [a, b] with |f(xn)| > n.
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Since xn ∈ [a, b], the sequence (xn) is bounded.

Therefore, by Bolzano-Weierstraß , (xn) has a convergent subsequence
(xnk

) that converges to some x0 ∈ [a, b].

Since xnk
→ x0 and f is continuous, we have f(xnk

) → f(x0) and so
|f(xnk

)| → |f(x0)|

On the other hand, since |f(xn)| > n for all n, we have |f(xn)| → ∞.
In particular this is true for the subsequence f(xnk

), and therefore
|f(xnk

)| → ∞ as well.

Comparing the two, we get |f(x0)| =∞, which is absurd ⇒⇐ �

2. The Extreme Value Theorem
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Video: The Extreme Value Theorem

The Extreme Value Theorem is of the unsung heroes in Calculus. It
says that any continuous function f on [a, b] must have a maximum
and minimum. Without this, optimization problems would be impos-
sible to solve!

Defintion:

f has a maximum on [a, b] if there is x0 ∈ [a, b] such that f(x0) ≥
f(x) for all x ∈ [a, b]

(Similarly for minimum)

Important: By definition, the maximum has to be attained. In other
words, there must be some x0 such that f(x0) is that maximum!

https://youtu.be/-cCWT8nUTv0
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Non-Example: f(x) = x2 has no maximum on (0, 2) because if it did,
the maximum would be 4, but there is no x0 in (0, 2) with f(x0) = 4

Extreme Value Theorem:

Suppose f : [a, b]→ R is continuous, then f has a maximum and
a minimum on [a, b]
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First, let’s prove a Useful Lemma that will be useful both here and for
the Intermediate Value Theorem:

Useful Lemma:

If S is a subset of R with sup(S) =: M < ∞, then there is a
sequence (sn) in S that converges to M

In other words, there is always a train with destination sup(S). That is,
you can always reach sup(S) with a sequence. In other words, sup(S)
isn’t such an abstract concept any more, we can attain it through se-
quences!

Proof of Useful Lemma: For every n ∈ N, consider M − 1
n <

M = sup(S). Therefore by definition of sup, for every n there is some
sn ∈ S with M − 1

n < sn ≤ M , but then by the squeeze theorem, we
have sn →M �
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Proof of the Extreme Value Theorem:

Note: It’s enough to show that f has a maximum, since we can re-
peat the same proof with −f instead of f (since −f has a maximum
whenever f has a minimum, and vice-versa)

STEP 1: Since f is continuous on [a, b], f is bounded, so there is C
such that |f(x)| ≤ C for all x.

Consider the set
S = {f(x) | x ∈ [a, b]}

Since f is bounded, S is bounded (by C), and therefore S has a least
upper bound sup(S) =: M

STEP 2: By the Useful Lemma above, there is a sequence yn ∈ S
with yn →M
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Since yn ∈ S, by definition of S we have yn = f(xn) for some xn ∈ [a, b]

Since xn ∈ [a, b], (xn) is bounded. Therefore, by the Bolzano-Weierstraß
theorem, (xn) has a convergent subsequence xnk

→ x0 for some x0 ∈
[a, b]

Since xnk
→ x0 and f is continuous, we have f(xnk

)→ f(x0)

On the other hand, f(xn) = yn →M (by definition of yn). In particu-
lar, the subsequence f(xnk

) = ynk
→M as well.

Comparing the two, we get f(x0) = M

STEP 3:
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Claim: f has a maximum

This follows because for all x ∈ [a, b]

f(x0) = M = sup {f(x) | x ∈ [a, b]} ≥ f(x)

And therefore f(x0) ≥ f(x) for all x ∈ [a, b] �

Note: The same result holds if you replace [a, b] by any compact set.
Check out this video if you’re interested: Continuity and Compactness

3. The Intermediate Value Theorem

Video: Intermediate Value Theorem

Let’s now discuss the second Value Theorem of Calculus: The Inter-
mediate Value Theorem. It says that if f is continuous, then f attains
all the values between f(a) and f(b):

Intermediate Value Theorem:

If f : [a, b] → R is continuous and if c is any number between
f(a) and f(b), then there is some x ∈ [a, b] such that f(x) = c

https://youtu.be/6Ql6TpnpwDE
https://youtu.be/wG6AaRjH7ck
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Note: There are functions f that are not continuous, but that satisfy
the intermediate value property above.

Example: (see HW)

f(x) =

{
sin
(
1
x

)
if x 6= 0

0 if x = 0

Discontinuous at 0 but satisfies the intermediate value property
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(Graph courtesy Desmos)

Proof:

STEP 1: WLOG, assume f(a) < c < f(b)

(If c = f(a), let x = a, and if c = f(b), let x = b. And if f(b) < f(a),
apply the result with −f)
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Since f(a) < c, let’s consider

S = {x ∈ [a, b] | f(x) < c}
Then S 6= ∅ (since a ∈ S) and S is bounded above (by b), therefore S
has a least upper bound sup(S) =: x0

Claim: f(x0) = c

We will do this by showing f(x0) ≤ c and f(x0) ≥ c

STEP 2: Show f(x0) ≤ c

By the Useful Lemma from above, there is a sequence (xn) in S with
xn → x0. Therefore, since f is continuous, we get f(xn)→ f(x0).
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But since xn ∈ S, by definition of S, we have f(xn) < c, and therefore

f(x0) = lim
n→∞

f(xn) ≤ cX

STEP 3: Show f(x0) ≥ c

First of all, we have x0 6= b because f(x0) ≥ c whereas f(b) > c, so x0
and b cannot be equal. Therefore x0 < b.

Since x0 < b, for n small enough, we have tn =: x0 + 1
n < b. By defini-

tion tn ∈ [a, b], tn > x0 and tn → x0.
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Since tn → x0 and f is continuous, we have f(tn)→ f(x0)

Moreover, since tn > x0 and x0 = sup(S), we must have tn /∈ S, mean-
ing that (by definition of S), f(tn) ≥ c.

Therefore, we get

f(x0) = lim
n→∞

f(tn) ≥ cX

Combining STEP 2 and STEP 3, we get f(x0) = c �

Note: The same result holds if you replace [a, b] by any connected set.
Connected intuitively just means that the set just had one piece. For
instance [a, b] is connected but [0, 1]∪ [2, 3] is disconnected; it has two
pieces.
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4. Image of an interval

Video: Image of an interval

Because the Intermediate Value Theorem, it is interesting to figure out
what happens when you apply a function to an interval.

Notation:

I denotes an interval, such as I = (0, 1) or [1, 2) or [2, 3] or (3,∞)
or even R

Definition:

If I is an interval then the image of f of I (or the range of f) is

f(I) = {f(x) | x ∈ I}

https://youtu.be/UOeqID3pWCo
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For general f , f(I) could be some crazy set (think a fractal or the
Cantor set), but it turns out that if f is continuous, then f(I) is very
nice:

Fact:

If f is continuous, then f(I) is an interval (or a single point)

Example 1:

If f(x) = x2 and I = (−2, 2) then

f(I) =
{
x2 | x ∈ (−2, 2)

}
= [0, 4)



LECTURE 25: PROPERTIES OF CONTINUOUS FUNCTIONS (I) 17

Beware: Even though (−2, 2) is open, f((−2, 2)) isn’t necessarily
open!

Example 2:

If f(x) ≡ 3 and I is any nonempty interval, then

f(I) = {3}
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Proof: Let J =: f(I) and let m =: inf(J) and M =: sup(J)

Case 1: m = M , then J = {m} is a single point X

Case 2: m < M .

Claim: J contains the interval (m,M)

Then we would be done because we would then have either J = (m,M)
or J = [m,M) or J = (m,M ] or J = [m,M ], depending on whether or
not m = inf(J) and M = sup(J) are in J or not (here the endpoints
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may be infinite).

Proof of Claim: Let c ∈ (m,M), and show c ∈ J .

By assumption m < c < M . Since c > m = inf(J), by definition of
inf, there is y0 ∈ J such that y0 < c, and since c < M = sup(J), there
is y1 ∈ J such that c < y1.

Therefore we get y0 < c < y1.

Since y0 ∈ J = f(I), by definition of f(I), there is a ∈ I such that
y0 = f(a). Similarly there is b ∈ I such that y1 = f(b).
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Since f is continuous and c is between f(a) and f(b), by the Intermedi-
ate Value Theorem, there is x between a ∈ I and b ∈ I (so x ∈ I since
I is an interval) such that f(x) = c, but this means that c ∈ f(I) = J
X �
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