LECTURE 21: SERIES (III)

In this third and final episode of our series-extravaganza, we will prove the two remaining tests for convergence: The Integral Test and the Alternating Series Test.

1. **Integral Test 1**

 Video: [Integral Test 1](#)

 This test is *integral* in our understanding of series! It basically says that if an integral is \(\infty\), then the corresponding series is \(\infty\) as well.

 Integral Test 1:

 Suppose \(f(x) \geq 0\) is decreasing on \([1, \infty)\), then

 \[
 \int_{1}^{\infty} f(x) \, dx = \infty \Rightarrow \sum_{n=1}^{\infty} f(n) \text{ diverges}
 \]

 Date: Friday, May 15, 2020.
Example 1:

Does the 1-series converge or diverge?

\[\sum_{n=1}^{\infty} \frac{1}{n} \]

Let $f(x) = \frac{1}{x}$ (so $f(n) = \frac{1}{n}$), then

\[\int_{1}^{\infty} f(x) \, dx = \int_{1}^{\infty} \frac{1}{x} \, dx = [\ln(x)]_{1}^{\infty} = \ln(\infty) - \ln(1) = \infty - 0 = \infty \]

(We’re being a bit hand-wavy here because we haven’t defined improper integrals, but the result is still the same)

Therefore, by the integral test, $\sum \frac{1}{n}$ diverges.
Proof:

Note: To make things a bit easier to understand, we will do the proof for \(f(x) = \frac{1}{x} \) and show that \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges. The exact same proof works if you simply replace \(\frac{1}{x} \) by \(f(x) \) (see Homework)

Consider the partial sums:

\[
s_n = \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}
\]

Main Idea: Interpret the sum above in terms of areas of rectangles, and compare it with the area under \(f \), namely \(\int_{1}^{\infty} \frac{1}{x} \, dx \).

Start with the rectangle with base \([1, 2]\) and height \(f(1) = 1 \) (left endpoint), which has area \(1 \times 1 = 1 \).

Then consider the rectangle with base \([2, 3]\) and height \(f(2) = \frac{1}{2} \), which has area \(1 \times \frac{1}{2} = \frac{1}{2} \)

Continue that way until you have the rectangle with base \([n, n+1]\) and height \(\frac{1}{n} \), which has area \(\frac{1}{n} \)
Then

\[s_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} = \text{Sum of areas of } n \text{ rectangles} \]

(In the picture, \(s_n \) is the sum of the green and the blue regions)

On the other hand, the sum of the areas is larger than the area under \(f \) from 1 to \(n+1 \) that is \(\int_1^{n+1} f(x) \, dx \). (see the picture above; the area under \(f \) is denoted in green, whereas the areas of the rectangles are in green and blue).

This follows from the fact that \(f \) is decreasing, and therefore on each interval \([k, k+1]\) (with \(k = 1, \ldots, n \)), the left-endpoint is larger than any other value of \(f \) on that interval, and therefore the area of each rectangle is larger than the area under \(f \) on \([k, k+1]\) (and finally sum over \(k \) to get the result).
And therefore

\[s_n = \sum_{k=1}^{n} \frac{1}{k} \geq \int_{1}^{n+1} f(x)dx =: t_n \]

However

\[\lim_{n \to \infty} t_n = \lim_{n \to \infty} \int_{1}^{n+1} f(x)dx = \int_{1}^{\infty} f(x)dx = \infty \quad \text{(By assumption)} \]

And therefore, by comparison, \(\lim_{n \to \infty} s_n = \infty \), meaning that \(\sum_{n=1}^{\infty} \frac{1}{n} = \infty \) (by definition of a series)
Corollary:
If $p < 1$, then
\[\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ diverges} \]

Example 2:
\[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}} = \infty \]

Proof: Either use the integral test, or notice that if $p < 1$, then, since $n \geq 1$, we have $n^p \leq n$ (Think $\sqrt{n} \leq n$)

Therefore
\[
\sum_{n=1}^{\infty} \frac{1}{n^p} \geq \sum_{n=1}^{\infty} \frac{1}{n}
\]

But since \(\sum \frac{1}{n} = \infty \), we get \(\sum_{n=1}^{\infty} \frac{1}{n^p} = \infty \) by the comparison test.

2. **Integral Test 2**

Video: [Integral Test 2](#)

In a similar way, we can use the integral test to show that a series converges:

Example 3:

Does the 2–series converge?

\[
\sum_{n=1}^{\infty} \frac{1}{n^2}
\]

Let \(f(x) = \frac{1}{x^2} \), then

\[
\int_1^{\infty} f(x)dx = \int_1^{\infty} \frac{1}{x^2}dx = \left[-\frac{1}{x} \right]_1^{\infty} = -\frac{1}{\infty} + \frac{1}{1} = 1 < \infty
\]

Therefore \(\sum \frac{1}{n^2} \) converges.

Note: In fact, one can show \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \). Check out this video for a proof if you’re interested: [Sum of \(\frac{1}{n^2} \)](#)
WARNING: In general, the value of the integral tells us nothing about the value of the series. For instance, here $\int_1^{\infty} \frac{1}{x^2} \, dx = 1$, but $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, which are not related.

Integral Test 2:

Suppose $f(x) \geq 0$ and is decreasing on $[1, \infty)$. Then

$$\int_1^{\infty} f(x) \, dx \text{ converges } \Rightarrow \sum_{n=1}^{\infty} f(n) \text{ converges}$$

Proof: This time we’ll illustrate the proof with $\frac{1}{x^2}$.

Consider again the partial sums

$$s_n = \sum_{k=1}^{n} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2}$$

Recall:

If the terms of the sequence are ≥ 0, then

$$(s_n) \text{ converges } \Leftrightarrow (s_n) \text{ is bounded}$$

Hence it is enough to show that (s_n) is bounded.

This time, start with the rectangle with base $[0, 1]$ and height $f(1) = 1$ (right endpoint) which has area 1.

Then consider the rectangle with base $[1, 2]$ and height $f(2) = \frac{1}{4}$.

Continue this way until you get the rectangle with base $[n-1, n]$ and height $f(n) = \frac{1}{n^2}$.
Note: This is not quite the same as before! In the proof before, we took the left endpoints, but here we take the right endpoints.

Therefore:

$$s_n = 1 + \frac{1}{4} + \cdots + \frac{1}{n^2} = \text{Sum of the areas of the rectangles}$$

Note: Since f and $\int_1^\infty f(x)dx$ is only defined on $[1, \infty)$, we need to ignore the first rectangle (which has finite area anyway), so

$$s_n = (\text{Rectangle 1}) + (\text{Rectangles 2 to n}) = 1 + (\text{Rectangles 2 to n})$$

This time, notice that the area under the graph of f from 1 to n is bigger than the sum of the areas of rectangles 2 to n (in the picture above, the areas of the rectangles is in blue, but the area under the graph of f is in blue and green).

This follows again from the fact that f is decreasing: On each rectangle $[k-1, k]$ (with $k = 2, \ldots, n$), $f(k) = \frac{1}{k^2}$ is smaller than any other
value of f in the rectangle, therefore the area under f is bigger than the area of the rectangle (and finally sum over $k = 2, \ldots, n$)

Hence the areas of rectangles 2 to n is $\leq \int_1^n f(x) dx$, and therefore:

$$s_n \leq 1 + \text{Area of Rectangles 2 to } n$$

$$\leq 1 + \int_1^n f(x) dx$$

$$\leq 1 + \int_1^\infty f(x) dx \text{ (since } f \geq 0)$$

Therefore, with $M =: 1 + \int_1^\infty f(x) dx$ we get $0 \leq s_n \leq M$

Hence $|s_n| \leq M$ for all n, and so (s_n) is bounded, and therefore $\sum \frac{1}{n^2}$ converges (by the fact above)
Corollary:

If $p > 1$, then

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges}$$

Proof: This is because

$$\int_{1}^{\infty} \frac{1}{x^p} dx = \int_{1}^{\infty} x^{-p} dx = \left[\frac{x^{1-p}}{1-p} \right]_1^\infty = 0 - \left(\frac{1}{1-p} \right) = \frac{1}{p-1} < \infty$$

Therefore, by the integral test, we have $\sum \frac{1}{n^p}$ converges.

Combining the two corollaries, we get:

Corollary: [p-series]

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges } \iff p > 1$$

3. Alternating Series Test

Video: [Alternating Series Test](#)

Finally, there is a wonderful test called the alternating series test, which basically says that all alternating series converge.
Definition:

An alternating series is a series of the form \(\sum (-1)^n a_n \) or \(\sum (-1)^{n+1} a_n \), where \(a_n \geq 0 \).

Example 4:

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n} \right) = 1 - \frac{1}{2} + \frac{1}{3} - \ldots
\]

is an alternating series with \(a_n = \frac{1}{n} \).

In other words, an alternating series alternates between positive and negative values.

Alternating Series Test:

If \(a_n \geq 0 \), is decreasing, and \(a_n \geq 0 \) then \(\sum (-1)^n a_n \) converges.

Example 5:

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
\]

converges because \(a_n = \frac{1}{n} \geq 0 \) and is decreasing.

Proof: For this, we need to use the Cauchy Criterion from two lectures ago:

Recall: Cauchy Criterion

\(\sum a_n \) converges if and only if for all \(\epsilon > 0 \) there is \(N \) such that if \(n \geq m > N \), then \(|\sum_{k=m}^{n} a_n| < \epsilon \).
Let \(\epsilon > 0 \) be given. Since \(a_n \to 0 \) there some \(N \) such that \(a_N < \epsilon \).

With \(N \) as above, if \(n \geq m > N \), let’s show the following:

Claim:

\[
\left| \sum_{k=m}^{n} (-1)^k a_k \right| \leq a_N
\]

Then we would be done because we’d have

\[
\left| \sum_{k=m}^{n} (-1)^k a_k \right| \leq a_N < \epsilon
\]

Therefore \(\sum (-1)^n a_n \) converges by the Cauchy criterion.

Proof of Claim: Notice:
\[\left| \sum_{k=m}^{n} (-1)^k a_k \right| = \left| (-1)^m a_m + (-1)^{m+1} a_{m+1} + \cdots + (-1)^n a_n \right| \]

\[= \left| (-1)^m \left(a_m - a_{m+1} + \cdots + (-1)^{n-m} a_n \right) \pm 1 \right| \]

\[= \left| a_m - a_{m+1} + \cdots (-1)^{n-m} a_n \right| \]

Case 1: \(n - m \) is odd

Then \((-1)^{n-m} = -1 \) (so our sum looks something like \(a_3 - a_4 + a_5 - a_6 \)),
and so

\[\left| a_m - a_{m+1} + \cdots (-1)^{n-m} a_n \right| = \left| a_m - a_{m+1} + \cdots - a_n \right| \]

\[= \left| \underbrace{a_m - a_{m+1}}_{\geq 0} + \cdots + \underbrace{(a_{n-1} - a_n)}_{\geq 0} \right| \]

\[= a_m - a_{m+1} + \cdots + a_{n-1} - a_n \]

(Here we used the fact that \((a_n) \) is decreasing, and so, for example, \(a_m \geq a_{m+1} \), hence \(a_m - a_{m+1} \geq 0 \))
On the other hand, we can write this as (Analogy: Think \(a_3 - a_4 + a_5 - a_6 = a_3 - (a_4 - a_5) - a_6 \))

\[
a_m - a_{m+1} + \cdots - a_n = a_m - a_{m+1} + a_{m+2} + \cdots - a_{n-2} + a_{n-1} - a_n
\]

\[
= a_m - \left(a_{m+1} - a_{m+2} \right) - \cdots - \left(a_{n-2} - a_{n-1} \right) - a_n
\]

\[
\leq a_m - a_n
\]

\[
\geq 0
\]

\[
\leq a_m
\]

\[
\leq a_N \checkmark
\]

(the last inequality follows because \(m > N \) and \((a_n)\) is decreasing) Hence

\[
\left| \sum_{k=m}^{n} (-1)^k a_k \right| = |a_m - a_{m+1} + \cdots - a_n| \leq a_N \checkmark
\]
And we are done in the case where \(n - m \) is odd

Case 2: \(n - m \) is even

Then \((-1)^{n-m} = 1\) (so our sum looks something like \(a_3 - a_4 + a_5 - a_6 + a_7 = (a_3 - a_4) + (a_5 - a_6) + a_7 \))

Therefore:

\[
|a_m - a_{m+1} + \ldots (-1)^{n-m}a_n| = |a_m - a_{m+1} + \cdots + a_n| \\
= \left| \left(a_m - a_{m+1} \right) + \cdots + \left(a_{n-2} - a_{n-1} \right) + a_n \right| \\
= a_m - a_{m+1} + \cdots + a_n
\]

On the other hand, we can write this as (Analogy: Think \(a_3 - a_4 + a_5 - a_6 + a_7 = a_3 - (a_4 - a_5) - (a_6 - a_7) \))

\[
a_m - a_{m+1} + \cdots + a_n = a_m - a_{m+1} + a_{m+2} + \cdots - a_{n-1} + a_n \\
= a_m - \left(a_{m+1} - a_{m+2} \right) - \cdots - \left(a_{n-1} - a_n \right) \\
\leq a_m \\
\leq a_N
\]

Hence

\[
\left| \sum_{k=m}^{n} (-1)^k a_k \right| = |a_m - a_{m+1} + \cdots + a_n| \leq a_N \checkmark
\]

And we are done in this case as well \(\square \)
4. Error Estimate

In fact, more can be said about the convergence of an alternating series:

Error Estimate:

Let \(\sum (-1)^n a_n \) be an alternating series that converges to \(S \), then

\[
|s_n - S| \leq a_{n+1}
\]

(Where \(s_n \) is the \(n \)-th partial sum)

That is the difference/error between the sum of the first \(n \) terms and \(S \) is at most equal to the next term \(a_{n+1} \)

Example 6:

One can show (using power series, see Math 140B) that

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} + \cdots = \ln(2)
\]

What the above error estimate (with \(n = 4 \)) is saying is that

\[
|s_4 - S| = \left| \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \right) - \ln(2) \right| \leq a_5 = \frac{1}{5}
\]

So with the first 4 terms, we are at most \(\frac{1}{5} = 0.2 \) away from the correct answer.

Intuitively: This makes sense because the partial sums \(s_n \) jump back and forth between values bigger than \(S \) and smaller than \(S \) (since the series is alternating).
Hence $|s_n - S|$ should be smaller than $|s_{n+1} - s_n| = a_{n+1}$ (since $s_{n+1} = s_n + (-1)^{n+1}a_{n+1}$, since the sum of the first $n + 1$ terms is the sum of the first n terms plus the last term)

Proof of Error Estimate: (optional; not in the video)

Notice that in the proof above, we have shown that for all m and all $n \geq m$

$$\left| \sum_{k=m}^{n} (-1)^k a_k \right| \leq a_m$$

(We only used a_N in the very last step)

Therefore, letting $n \to \infty$ in the above, we get

$$\left| \sum_{k=m}^{\infty} (-1)^k a_k \right| \leq a_m$$

But since the sum from m to ∞ is the same thing as the sum from 1 to ∞ minus the sum from 1 to $m - 1$, we get:
∞ ∑ \[k=m \] \((−1)^k a_k\) = \(\left(\sum_{k=1}^{\infty} (-1)^k a_k\right) - \left(\sum_{k=1}^{m-1} (-1)^k a_k\right) = S - s_{m−1}\)

Where \(S\) is the value of the series, and \(s_{m−1}\) is the partial sum. Therefore, we get

\[|S - s_{m−1}| \leq a_m \]

And so, writing \(n\) instead of \(m−1\) (and \(n+1\) instead of \(m\)) we therefore obtain

\[|s_n - S| \leq a_{n+1} \quad \Box \]

5. **Conditional Convergence**

The alternating series test is useful to show that a series converges conditionally:
Recall:

(1) \(\sum a_n \) is **absolutely convergent** if \(\sum |a_n| \) is convergent

(2) Absolute Convergence \(\Rightarrow \) Convergent

Conditionally Convergent

Series that are convergent, but not absolutely convergent are called *conditionally convergent*

Definition:

\[\sum a_n \text{ is conditionally convergent if } \sum a_n \text{ converges, but } \sum |a_n| \text{ diverges} \]

Example 7:

\[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} + \ldots \]
This series is convergent by the alternating series test (see above), but

\[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \]

is divergent, and therefore \(\sum \frac{(-1)^{n+1}}{n} \) is conditionally convergent.

Optional Fun Fact:
If \(\sum a_n \) is conditionally convergent, then you can rearrange \(\sum a_n \) to get any limit you want!

For example, a rearrangement of

\[1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} \ldots \]

Is

\[1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \ldots \]

Not only can it be shown that the two series here have two different limits, but given any \(a \in \mathbb{R} \) (including \(\pm \infty \)), there is a rearrangement of the first series that converges to \(a \) (WOW)

Congratulations, we are now officially done with Chapter 2! Next time we’ll start Chapter 3, the magical world of Continuous Functions.