1.

STEP 1: First of all, if \(s \in A + B \), then \(s = a + b \) where \(a \in A \) and \(b \in B \), but by definition of \(\sup(A) \) we get \(a \leq \sup(A) \) and similarly \(b \leq \sup(B) \), hence

\[
s = a + b \leq \sup(A) + \sup(B)
\]

Since \(s \) was arbitrary, \(\sup(A) + \sup(B) \) is an upper bound for \(A + B \), so because \(\sup(A + B) \) is the *least* upper bound for \(A + B \), we get

\[
\sup(A + B) \leq \sup(A) + \sup(B) \checkmark
\]

STEP 2: Fix \(a \in A \), then for every \(b \in B \), since \(a + b \in A + B \) and by definition of \(\sup(A + B) \), we get:

\[
a + b \leq \sup(A + B)
\]

\[
a \leq \sup(A + B) - b
\]

But since \(a \in A \) is arbitrary, \(\sup(A + B) - b \) is an upper bound for \(A \), and hence since \(\sup(A) \) is the *least* upper bound:

\[
\sup(A) \leq \sup(A + B) - b
\]

\[
b \leq \sup(A + B) - \sup(A)
\]
But since \(b \in B \) is arbitrary, \(\sup(A + B) - \sup(A) \) is an upper bound for \(B \), so since \(\sup(B) \) is the \textit{least} upper bound:

\[
\sup(B) \leq \sup(A + B) - \sup(A) \\
\sup(A) + \sup(B) \leq \sup(A + B) \vee
\]

Therefore \(\sup(A + B) = \sup(A) + \sup(B) \). \(\square \)
2.

STEP 1: Scratchwork

Since \((s_n)\) converges, \((s_n)\) is bounded above, so there is \(M > 0\) such that \(|s_n| \leq M\) for all \(n\).

\[
\left| (s_n)^2 - s^2 \right| = |s_n - s| |s_n + s| \\
\leq |s_n - s| (|s_n| + |s|) \\
\leq |s_n - s| (M + |s|) \\
< \epsilon
\]

Which gives:

\[
|s_n - s| < \frac{\epsilon}{M + |s|}
\]

STEP 2: Actual Proof

First of all, since \((s_n)\) converges, \((s_n)\) is bounded, so there is \(M > 0\) such that \(|s_n| \leq M\) for all \(n\).

Let \(\epsilon > 0\) be given

Then since \(s_n \to s\) there is \(N\) such that for all \(n > N\), \(|s_n - s| < \frac{\epsilon}{M + |s|}\)

With that same \(N\), if \(n > N\), we get:
\[|(s_n)^2 - s^2| = |s_n - s| |s_n + s| \]
\[\leq |s_n - s| (|s_n| + |s|) \]
\[\leq |s_n - s| (M + |s|) \]
\[< \left(\frac{\epsilon}{M + |s|} \right) (M + |s|) \]
\[= \epsilon \sqrt{ } \]

Therefore \((s_n)^2\) converges to \(s^2\)
3.

Suppose by contradiction that \(\text{sup}(B) = M \) where \(M < \infty \). Since \(B \) has at least one positive term, we may assume \(M > 0 \).

Now consider \(M_1 = \frac{M}{2} < M \) (since \(M > 0 \)). By definition of \(\text{sup} \) this means there is \(2^n \in B \) such that \(2^n > \frac{M}{2} \), which implies \(M < 2^{n+1} \).

But this contradicts the fact that \(M \) is an upper bound for \(B \), so all \(n \in \mathbb{N} \), \(2^n \leq M \) \(\Rightarrow \Leftrightarrow \) \(\square \)
4. **Scratchwork:** Notice that $3 = 1 + 2$, so by the binomial theorem, we get:

\[
3^n = (1 + 2)^n = 1^n + n1^{n-1}2 + \text{POSITIVE JUNK} = 1 + 2n + \text{POSITIVE JUNK} > 2n > M
\]

Which suggests $N = \frac{M}{2}$.

Actual Proof: Let $M > 0$ be given and let $N = \frac{M}{2}$. Then if $n > N$, we have:

\[
3^n = (1 + 2)^n = 1 + 2n + \text{POSITIVE JUNK} > 2n > 2\left(\frac{M}{2}\right) = M \checkmark
\]

Therefore $\lim_{n \to \infty} 3^n = \infty$