MATH 2E REVIEW FOR FINAL

The final is in the usual classroom, Wed, December 12, 1:30pm – 3:30pm, 8–9 problems, covering Chapter 15 and 16 of Stewart calculus, no notes.

Chapter 15.

- (1) Calculate $\iint_R ye^{xy}dA$, where $R = \{(x,y) \mid 0 \le x \le 2, 0 \le y \le 3\}$.
- (2) Calculate $\int_0^1 \int_{\pi}^1 \frac{y e^{x^2}}{x^3} dx dy.$
- (3) Calculate $\iiint_E z dV$, where E is bounded by the planes y = 0, z = 0, x + y = 2 and the cylinder $y^2 + z^2 = 1$ in the first octant.
- (4) Calculate ∫∫∫_E yzdV where E lies above the plane z = 0, below the plane z = y, and inside the cylinder x² + y² = 4.
 (5) Calculate ∫∫∫_H z³√x² + y² + z² dV, where H is the solid hemisphere that lies above the

- xy-plane and has center the origin and radius 1. (6) Evaluate $\iint_R \frac{x-y}{x+y} dA$ where R is the square with vertices (0,2), (1,1), (2,2) and (1,3). (7) Find the volume of the region bounded by the surface $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$ and the coordinate planes. Consider the transformation $x = u^2$, $y = v^2$, and $z = w^2$.
- (8) Evaluate $\iint_R xydA$, where R is the square with vertices (0,0), (1,1), (2,0), and (1,-1). (9) Given a curve $r(t) = \langle 1+t, t^2, t^3 \rangle$, find the area of the triangle with vertices r(-1), r(1)
- and r(0).

Chapter 16.

- (1) Evaluate \$\int_C xds\$, where \$C\$ is the arc of the parabola \$y = x^2\$ from (0,0) to (1,1).
 (2) Evaluate \$\int_C ydx + (x + y^2)dy\$, \$C\$ is the ellipse \$4x^2 + 9y^2 = 36\$ with counter clockwise orientation.
- (3) Evaluate $\int_C F \cdot dr$, where $F = \langle \sqrt{xy}, e^y, xz \rangle$, C is given by $r(t) = \langle t^4, t^2, t^3 \rangle$, $0 \le t \le 1$.
- (4) Compute curl F where $F = \langle e^y, xe^y + e^z, ye^z \rangle$. Then compute the line integral $\int_{\mathcal{L}} F \cdot dr$ where C is any curve from (0,2,0) to (4,0,3). Hint: fundamental theorem of line integrals.
- (5) Verify Green's theorem is true for the line integral $\int_C xy^2 dx x^2y dy$, where C consists of the parabola $y = x^2$ from (-1,1) to (1,1) and the line segment from (1,1) to (-1,1). (6) Find the area of the part of the surface $z = x^2 + 2y$ that lies above the triangle with vertices
- (0,0), (1,0) and (1,2).
- (7) Find an equation of the tangent plane at the point (4, -2, 1) to the parametric surface S given by $r(u, v) = \langle v^2, -uv, u^2 \rangle, \ 0 \le u \le 3, \ -3 \le v \le 3.$

- (8) Evaluate $\iint_S z dS$ and $\iint_S x dS$ where S is the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 4.
- (9) Evaluate $\iint_{S} x^2z + y^2zdS$, where S is the part of the plane z = 4 + x + y that lies inside
- the cylinder $x^2 + y^2 = 4$. (10) Evaluate $\iint_S F \cdot dS$ where $F = \langle xz, -2y, 3x \rangle$ and S is the sphere $x^2 + y^2 + z^2 = 4$ with
- (11) Verify Stokes' theorem is true for $F = \langle x^2, y^2, z^2 \rangle$, where S is the part of the paraboloid $z = 1 x^2 y^2$ that lies above the xy-plane and S has upward orientation.
- (12) Evaluate $\int_C F \cdot dr$ where $F = \langle xy, yz, zx \rangle$ and C is the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), oriented counter clockwise as viewed from above.
- (13) Calculate $\iint_S F \cdot dS$ where $F = \langle x^3, y^3, z^3 \rangle$ and S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0 and z = 2.

 (14) Compute the outward flux of $F = \left\langle \frac{x}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{z}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right\rangle$ through the ellipsoid $4x_f^2 + 9y^2 + 6z^2 = 36$.
- (15) Compute $\int_C F \cdot dr$ where $F = \left\langle \frac{2x^3 + 2xy^2 2y}{x^2 + y^2}, \frac{2y^3 + 2xy + 2x}{x^2 + y^2} \right\rangle$ around any simple closed curve containing the origin (0,0).
- (16) Find the positively oriented simple closed curve C for which the value of the line integral $\int_C (y^3 - y) dx - 2x^3 dy \text{ is a maximum.}$