PHYS/CHEM 229A & PHYS100 Computational Methods
Mathematical, computational/numerical analyses in Physical Sciences using Mathematica
https://canvas.eee.uci.edu/courses/48880
Tues & Thurs 12:30-1:50 pm (Lecture DBH-1422)
Tues 2:00-2:50 pm (Lab session DBH-1425)
Office hour: Thurs 2 pm -3 pm (Office RH 210K or Online via Zoom)
First/Last day of class: Sept 22nd Thurs / Dec 1st Thurs
Final: Dec 9 Fri 10:30-12:30 pm or take-home

Recommended textbooks:
- MathematicaHandbook (Mathematica-based notebook by Peter Taborek)
 https://mathematica-handbook.com/
 Contents: http://www.mathematicahandbook.com/videos/TOCNarrow.html
 Click on get installer-> Download installer; run the installer in Mathematica using the transaction code (by purchase). Note that Mathematica is free for all UCI students (check OIT: KB0010917)
- Python/Matlab e.g. Programming for Computations-Python/Matlab
 (you can try if you want; we use Mathematica in current class)
 Springer Open online: http://hplgit.github.io/prog4comp/
- “Mathematical Methods for Physicists” by Arfken and Weber
- “Mathematical Methods in the Physical Sciences” by Boas
- “Computational Methods for Physics” by Franklin
- ... You pick one and keep it working with you for constant usage

Course Contents & Schedules special topics for Lab session (subject to adjustments)
- Syllabus and Preliminaries week 0 or 9/22 Thurs
- Linear Algebra and Vector Analysis week 1-2 or 09/27-10/6;
 + Mathematica usage tutorial
 + Lagrange multipliers and constrained optimization
- Complex Variables week 3 or 10/11-13;
 + Fourier series, transforms, and expansions (cont.)
- Simulation & Sampling week 4 or 10/18-20
 + DiracDelta and other generalized functions
- Ordinary Differential Equations (ODE) week 5-6 or 10/25-11/3;
 + Dimensional analysis + Asymptotic analysis
- Partial Differential Equations (PDE) week 7 or 11/8-10
 + Perturbation theory
- Probabilities and Statistics week 8 or 11/15-17
 + Calculus of Variations
- Stochastic Methods week 9/10 or 11/22-12/1 (no class 11/24)
 + Calculus of Variations (cont.)
- Case study presentations week 10 11/29 (Tues lecture + lab)
- Case study topics Individual group (1-2 person project; choose one topic below or discuss with me your own proposal, decide early)

 Circuits Review of elementary circuits, impedance, LRC circuits, switches
 Normal Modes Animations of blocks on springs, density of states, linearization
 Fresnel Equations Reflection and refraction of a vector wave at an interface
 Wave Guides Electromagnetic waves confined by conductors and dielectrics
 Thermodynamic Derivatives Symbolic calculations of thermodynamic derivatives
 Fluid Mechanics Navier-Stokes equation, vector Laplacian, vorticity
 Multipole Expansions Far field solutions to Laplace equation using cartesian tensors and spherical harmonics
 Numerical Integration Accuracy, Precision, Monte Carlo integration
Digital Sampling Digital scope simulator, aliasing, Nyquist critical frequency
N Body Simulation Simulating a gas of hard spheres; animations
Quantum Square well Bound states of a 1D potential well
Quantum Harmonic Oscillator Solution of quantum oscillator problem using series and DSolve
Hydrogen Atom Schrödinger equation for hydrogenic atom; 3D graphics
Statistical Learning Basics Contact me to discuss options

Course policy and grading etc.
- Lecture + Lab on Tues (12:30 pm-2:50 pm)
 Lecture: 12:30-1:30 pm
 Lab: 2-2:50 pm Special topics first (~10 mins on topic concept); the student-lead Discussion and Problem session (20 mins; see topics in course contents); the Q/A & peer-review homework/grading session (20 mins); 1 point for lab participation, 3 points for leading the session, 10 points total or 10% of your final grades
- Lecture + office hour on Thurs (12:30 pm-2:50 pm)
 Lecture: 12:30-1:30 pm
 Office hour: right after the lecture at 2-2:50 pm
- Homework (HW) assignments, submission, and grading policies
 - 8 HW problem sets (week 0-3, 5-8)
 - New assignment posted online Tues evening/Wed morning, due ~6 days by next Mon (11:59 pm)
 - You choose 3-5 problems to finish among those provided
 - Solutions posted online Tues morning (late submission after solution posted gets 30% scores; no further submission/score after Tues)
 - One grades another via Canvas peer-review grading system
 - 10 points each set (8 points problems + 2 points on peer grading)
 - 80 points total or 40% of your final grades
 Note: one participation score optional to replace one lowest HW score (e.g. for accidental late/missing submission): 10-point total (class participation +4 point; midterm survey +3 point; final evaluation +3 point)
- Final Exam In class or take-home (to be decided)
 Account for 30% of your final grades
- Case study group presentation mainly arranged in class the last week; or one can do it in weekly lab session; each individual group (e.g. 1-2 persons) chooses one topic (see Case studies above) as early as possible, and presents to the full class for review; account for 20% of your final grades

Mathematica preliminaries We start on Sept 23rd (with HW1 due incoming Tues)
- Mathematica Usage Tutorials in the Mathematica Handbook (it is useful & can be fun)
 - Intro to Mathematica 1&2 Basic syntax, intro to replacement rules and functions; Plotting, DEs, multi-line functions
 - Vectors & Integrals Operations on vectors, multiple integrals, 3D graphics
 - Basic Numerical Functions FindRoot, NSolve, LinearSolve, NIntegrate, etc.
 - Input & Output Importing and Exporting spreadsheets, graphics, etc.
 - Plotting&Graphics Examples Many examples of 2D and 3D graphics, animations, etc.

Mathematics preliminaries If you have not learned topics like linear algebra in college, please prepare yourself on the basics before class.

Note: Supporting Neurodiversity in the Classroom