Inchworm stepping of Myc-Max heterodimer protein diffusion along DNA
Liqiang Dai1, 2, Jin Yu3*
1 Shenzhen JL computational science and applied research institute, Shenzhen, China
2 Beijing Computational Science Research Center, Beijing, China
3 Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine
Email: daili@csrc.ac.cn, jin.yu@uci.edu

Introduction
Oncogenic protein Myc serves as a transcription factor to control cell metabolisms. Myc dimerizes via leucine zipper with its associated partner protein Max to form a heterodimer structure, which then binds target DNA sequences to regulate gene transcription. The regulation depends on Myc-Max binding to DNA and searching for target sequences via diffusional motions along DNA. Here, we conduct structure-based molecular dynamics (MD) simulations to investigate the diffusion dynamics of the Myc-Max heterodimer along DNA. We found that the heterodimer protein slides on the DNA in a rotation-uncoupled manner in coarse-grained simulations, as its two helical DNA binding basic regions (BRs) alternate between open and close conformations via inchworm stepping motions. In such motions, the two BRs of the heterodimer step across the DNA strand one by one, with step sizes reaching about half of a DNA helical pitch length. Atomic MD simulations of the Myc-Max heterodimer in complex with DNA have also been conducted. Hydrogen bond interactions are revealed between the two BRs and two complementary DNA strands, respectively. In the non-specific DNA binding, the BR from Myc shows an onset of stepping on one association DNA strand and starts detaching from the other strand. Overall, our simulation studies suggest that the inchworm stepping motions of the Myc-Max heterodimer can be achieved during the protein diffusion along DNA.

Methods
Coarse-grained simulations
Here we conduct coarse-grained simulations by CafeMol 3.0 software1. The initial structure of the Myc-Max heterodimer was taken from the crystal structure (pdb: 1NKD)2. The CG protein structure using the Go model in which the protein is represented by a chain of Cα atoms of every amino acids and with conformations biased towards the native structure, or crystal structure here. Meanwhile, the DNA is described by the 3SPN model3.

Molecular Dynamics simulations
We also performed atomistic molecular dynamics simulations for MYC-MAX on different DNA sequence by Gromacs 5.1.2

Conformational changes
Three main conformations of Myc-Max
The sliding of the Myc-Max heterodimer is coupled closely to significant conformational changes between the two BRs. Three main conformations of Myc-Max sliding on DNA are found.

Sliding of Myc-Max on DNA
The coarse-grained simulations suggest that the Myc-Max heterodimer diffusion along DNA follows an inchworm model, moving either forward or backward. Inchworm stepping model

Starting from the highly populated closed conformation (state 1), the leading BR moves forward first across the DNA strand to the next DNA groove, at a step size of ~13 Å, so that Myc-Max transits to the open conformation (state 2); then the lagging BR follows to recover the protein back to the closed state. BR swapping
Occasionally, starting from the closed state, the lagging BR can also move forward first. In such a case, the heterodimer transits to the tightly closed state (state 3), which is of low population and shortly lived. Rather than transiting back to the stabilized closed state, the tightly closed state allows the BR ‘swapping’ so that the left-right positioning between the two BRs exchanges or reverses.

Conclusion
We conduct both coarse-grained simulations and atomistic molecular dynamics simulations to investigate the diffusion dynamics of Myc-Max along DNA.
I. Myc-Max can slide along DNA in a rotation uncoupled way (facilitated diffusion).
II. Three main conformations of Myc-Max while diffusion on DNA are found.
III. Myc-Max diffuses along DNA follows an inchworm model.
IV. Myc and Max can swap occasionally.

References and Acknowledgements

We acknowledge the computational support from the Beijing Computational Science Research Center (CSCRC).