Midterm 2 Review Key

[Sourced from Smith: Organic Chemistry 6th Edition]

1. Draw the products formed when the α, β-unsaturated ketone is treated with each reagent. Ignore stereochemistry. (17.40)

 ![Ketone reduction](image)

 b. Catalytic hydrogenation of ketone: reduction of the C=C bond

 ![Catalytic hydrogenation](image)

 c. Catalytic hydrogenation of ketone: reduction of C=C and C=O bonds to form alcohol

 ![Catalytic hydrogenation alcohol](image)

 d. Reaction of organometallic reagents with a ketone: addition of methyl group and hydrogen from water across the C=O bond.

 ![Organometallic reaction](image)

 e. Reaction of organometallic reagents with a ketone: addition of r group as well as hydrogen from the water across the C=O bond.
2. Draw the stepwise mechanism for the following reaction. (17.52)

3. Draw a stepwise mechanism for the following reaction. (17.55)
4. Outline a synthesis of each Wittig reagent from Ph₃P and an alkyl halide

 a.

 \[
 \text{Ph}_3\text{P} + \text{BuLi} \rightarrow \text{Ph}_3\text{P} = \text{Bu}^-
 \]

 b.

 \[
 \text{Ph}_3\text{P} + \text{BuLi} \rightarrow \text{Ph}_3\text{P} = \text{Me}^-
 \]

 c.

 \[
 \text{Ph}_3\text{P} + \text{BuLi} \rightarrow \text{Ph}_3\text{P} = \text{Ph}^-
 \]

5. **Cyanohydrins:** Draw out the products of each reaction. Keep potential stereoisomers in mind.

 a.

 \[
 \text{NaCN} \rightarrow \text{HO} - \text{CN} + \text{HO} - \text{CN}
 \]

 The cyanide anion will perform a nucleophilic attack on the carbonyl, leading to addition. Keep in mind that this forms a new stereogenic center.

 b.

 \[
 \text{}
 \]
This question asks for the hydrolysis of a CN group, the mechanism of which isn’t required but what matters is that it changes the CN to a COOH.

Imine/Enamines

5. Draw the product formed when the following molecules react with i) MeNH$_2$ ii) Et$_2$NH in catalytic acetic acid

a.

![Diagram](image)

i) Acetic acid is important for protonating the O on acetone, leading to the carbonyl carbon being electrophilic enough for MeNH$_2$ to perform a nucleophilic attack on the carbon. Ultimately, a C=N double bond replaces the C=O double bond.

ii) Same as with (i) but at the end the C=N double bond leads to a positively charged N, so a deprotonation of a carbon adjacent to the C=N carbon leads to electrons being pushed to the N, neutralizing it.

b.

![Diagram](image)

i) MeNH$_2$ performs a nucleophilic attack on the carbon after protonation of O. Ultimately, a C=N double bond replaces the C=O double bond.

ii) Same as with (i) but at the end the C=N double bond leads to a positively charged N, but there is no H on carbons adjacent to the C=N carbon, thus the enamine remains in its positive form.
Synthesis

6. What carbonyl and amine are needed to produce the following products?

a. ![Diagram a]

b. ![Diagram b]

In imine/enamine formation, the C=O bond is replaced by N-H. In the case of enamine, deprotonation of a carbon adjacent to the C=N carbon pushes electrons to the N, neutralizing it.

7. What Wittig reagent and carbonyl are needed to produce the following alkenes? Choose the preferred route.

a. ![Diagram a]

b. ![Diagram b]
In the most simple sense, \(\text{Ph}_3\text{P} = \text{R} \) replaces the \(\text{C} = \text{O} \) bond with a \(\text{C} = \text{C} \) bond. The preferred path is one in which the phosphonium ylide is least substituted. This is because in synthesizing the Wittig reagent, \(\text{P} \) performs an \(\text{Sn2} \) attack on an alkyl halide. The less substituted the alkyl halide, the more efficient the synthesis.

Mechanisms

8. Draw out the stepwise mechanisms for the following reactions
 a.
Spectroscopy
9. Draw out the compound given the molecular formula and NMR spectra
 a. $\text{C}_{10}\text{H}_{12}\text{O}$

There are 8 carbon signals whereas the molecule formula has 10 carbons. This is a big indicator that there are symmetrical carbons on the molecule. A carbon-NMR shift above 190 ppm indicates a ketone or aldehyde. Now observe the H-NMR splitting: triplet 3H must mean terminal CH_3, quartet 2H is a methylene, singlet 2H is a methylene with no adjacent C-H, and the multiplet 5H is characteristic of 5 benzene hydrogens.
10. Circle the compound that corresponds to the following NMR spectra.

b.
Count the number of carbon signals. There are 5 whereas (b) has 6. Eliminate (b). (c) and (e) can be eliminated because aldehydes and ketones have a C-NMR chemical shift of 190+ ppm. That is not observed, thus cross out (c) and (e). Now compare the H-splitting for (a) and (d): singlet 1H at 5 ppm is O-H, the two singlet 3H’s are terminal CH₃ with no adjacent C-H; at this point, the only structure that corresponds to this is (d).