Chem 51A Midterm 1 Review

Part A: Multiple Choice (14 questions)

- 1. Which of the following molecular formulas corresponds to the given skeletal structure?
 - a. $CH_3CH(CH_3)CH_2CH_2CH_3CH(CH_2)_3CH_2CH_2CH_3$
 - b. $CH_3CH(CH_3)CH_2CH(CH_2CH_3)CH(CH_3)CH(CH_3)_2$
 - c. $CH_3CH(CH_3)CH_2CH(CH_3)CH(CH_2CH_3)CH_2CH_2CH_3$
 - d. Too many C and H idk
- 2. What is the ground state electron configuration for the element Sulfur (S)?
 - a. $1s^22s^22p^6$
 - b. $1s^22s^22p^6$
 - c. 1s²2s²2p⁶3s²3p⁶
 - d. 1s²2s²2p⁶3s²3p⁴
- 3. Determine the hybridization between the 2 atoms below.

- a. C_{sp}^3 - N_{sp}^3
- b. C_{sp}³-N_{sp}
- c. $C_{sp}^3-C_{sp}^2$
- d. $C_{sp}^3-N_{sp}^2$

4. Circle 2 of the following compounds that are constitutional isomers.

5. Which of the following compounds is the most acidic?

- 6. Which atomic orbitals overlap to form the C-H bond in ethylene (CH₂CH₂)? Which atomic orbitals overlap to form the C-C **sigma** bond in ethylene?
 - a. C_{sp3}-H_{sp3}, C_{sp3}-C_{sp2}
 - b. C_{sp2} - H_{sp3} , C_{sp2} - C_{sp3}
 - c. C_{sp2}-H_{1s}, C_{sp2}-C_{sp2}
 - d. C_{sp3}-H_{1s}, C_{1s} C_{1s}
- 7. Which of the following correctly orders increasing C-H bond length?
 - I. H-C ≡CH
 - II. H-CH₂-CH₃
 - III. H-CH=CH₂
 - a. I < II < III
 - b. II < I < III
 - c. ||| < | < ||
 - d. || < ||| < |
 - e. I < III < II

- 8. Which of the following correctly orders **decreasing** C-H bond strength?(from question 7)
 - a. I < II < III
 - b. II < I < III
 - c. ||| < | < ||
 - d. || < ||| < |
 - e. I < III < II
- 9. In describing the **quantum mechanical model of the atom**, which of the following is **not** true?
 - a. An atomic orbital is a mathematical function that describes the wave-like behavior of electrons
 - b. Antibonding orbitals are filled up when forming molecules
 - c. Antibonding orbitals are lower in energy than bonding orbitals
 - d. Additional electrons go into anti-bonding orbitals when bonding orbitals are filled
- 10. Which of the following statements about the molecule is true?

- a. Atom designated A has a hybridization of sp
- b. Bond designated at B has bond overlap of two Csp3 orbitals
- c. Atom designated at C is able to create resonance structures through its lone pairs
- d. Atom designated at C has a bond angle of 109.5°
- 11. Given the following acid-base reaction, methoxide (⁻O-CH₃) can be characterized as a ___.

- a. Bronsted Acid
- b. Bronsted Base
- c. Lewis Acid
- d. Lewis Base
- e. More than one answer is correct
- 12. Which of the following is the **most** acidic hydrogen in metoprolol and why? (Hint: Element Effect)

metoprolol (used to treat high blood pressure)

- a. H attached to Oxygen; conjugate base is more stable
- b. H attached to Oxygen; conjugate base is less stable
- c. H attached to Nitrogen; conjugate base is more stable
- d. H attached to Nitrogen; conjugate base is less stable
- 13. Which of the following compounds is most acidic?

14. Which of the following statements regarding the resonance structures of methyl acetate is **false**? (two of answer choices on next page)

- a. Red arrows describe the *movement of electrons*
- b. Lone pairs on the right-most oxygen are delocalized from O p-orbital to the π^* (antibonding) orbital of the C-O molecular orbital
- c. The least-significant contributor to the resonance hybrid is the right-most structure
- d. The two C-O bonds will have a bond length in between a single and double bond.

Short Answer (4 Questions):

1. Answer the questions below regarding the structure of molecules and how they affect acidity.

- a. When comparing the acidity of two different acids, one must consider the stability of the conjugate bases using four factors—what are the four factors?
- b. Explain the effect of resonance and how it stabilizes the conjugate base.
- c. Explain what effect causes H-I to be more acidic than H-F and why.

2. Naproxen sodium (generic for Aleve) is a nonsteroidal anti-inflammatory drug used for treating fever and pain. Answer the questions below regarding naproxen sodium.

Naproxen sodium

- a. What is the molecular formula of naproxen sodium (not including sodium)?
- b. Draw one resonance structure of naproxen sodium (not including sodium).

- c. How many sp² hybridized carbons are there?
- d. Draw one structural isomer of naproxen sodium.

3. Menthol is a chemical extracted from mint leaves and is used as a flavoring agent and in topical medication for its cooling sensation. Answer the questions below regarding the acid-base reaction.

Menthol

- a. Draw all lone pairs on menthol and methoxide.
- b. Draw the curved arrow mechanism to show the flow of electrons in the reaction
- c. Label the conjugate acid and conjugate base of the reaction.
- d. Menthol has a pKa of 19 and methanol has a pKa of 15.7. Which side of the equilibrium will the reaction favor? Explain why.
- 4. The compound below is named 3-buten-2-one.

a. Draw the resonance structures of 3-buten-2-one.

- b. Label the hybridization of each carbon atom.
- c. Draw the resonance hybrid. Be sure to mark any atoms that have partial charges.