Chem 51A Midterm 1 Review

Part A: Multiple Choice (14 questions)

1. Which of the following molecular formulas corresponds to the given skeletal structure?
a. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
c. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
d. Too many C and H idk
2. What is the ground state electron configuration for the
 element Sulfur (S)?
a. $1 s^{2} 2 s^{2} 2 p^{6}$
b. $1 s^{2} 2 s^{2} 2 p^{6}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
3. Determine the hybridization between the 2 atoms below.

a. $\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{N}_{\mathrm{sp}}{ }^{3}$
b. $\mathrm{Csp}^{3}-\mathrm{N}_{\mathrm{sp}}$
c. $\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{C}_{\mathrm{sp}}{ }^{2}$
d. $\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{Nspp}^{2}$
4. Circle 2 of the following compounds that are constitutional isomers.

A

B

C

D
5. Which of the following compounds is the most acidic?

I.

II.

III.

IV.
a. I
b. II
c. III
d. IV
6. Which atomic orbitals overlap to form the $\mathrm{C}-\mathrm{H}$ bond in ethylene $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$? Which atomic orbitals overlap to form the C-C sigma bond in ethylene?
a. $\mathrm{C}_{\mathrm{sp} 3}-\mathrm{H}_{\mathrm{sp} 3}, \mathrm{C}_{\mathrm{sp} 3}-\mathrm{C}_{\mathrm{sp} 2}$
b. $\mathrm{C}_{\mathrm{sp} 2}-\mathrm{H}_{\mathrm{sp} 3}, \mathrm{C}_{\mathrm{sp2} 2}-\mathrm{C}_{\mathrm{sp} 3}$
c. $\mathrm{C}_{\mathrm{sp2} 2}-\mathrm{H}_{1 \mathrm{~s}}, \mathrm{C}_{\mathrm{sp2} 2}-\mathrm{C}_{\mathrm{sp} 2}$
d. $\mathrm{C}_{\mathrm{sp} 3}-\mathrm{H}_{1 \mathrm{~s}}, \mathrm{C}_{1 \mathrm{~s}}-\mathrm{C}_{1 \mathrm{~s}}$
7. Which of the following correctly orders increasing C-H bond length?
I. $\mathrm{H}-\mathrm{C} \equiv \mathrm{CH}$
II. $\mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
III. $\mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}$
a. $\mathrm{I}<\mathrm{II}<$ III
b. II $<$ I $<$ III
c. III $<$ I $<$ II
d. II $<$ III $<$ I
e. I $<$ III $<$ II
8. Which of the following correctly orders decreasing C-H bond strength?(from question 7)
a. I $<$ II $<$ III
b. II $<$ I $<$ III
c. III $<$ I $<$ II
d. II $<$ III $<$ I
e. I $<$ III $<$ II
9. In describing the quantum mechanical model of the atom, which of the following is not true?
a. An atomic orbital is a mathematical function that describes the wave-like behavior of electrons
b. Antibonding orbitals are filled up when forming molecules
c. Antibonding orbitals are lower in energy than bonding orbitals
d. Additional electrons go into anti-bonding orbitals when bonding orbitals are filled
10. Which of the following statements about the molecule is true?

a. Atom designated A has a hybridization of sp
b. Bond designated at B has bond overlap of two Csp3 orbitals
c. Atom designated at C is able to create resonance structures through its lone pairs
d. Atom designated at C has a bond angle of 109.5°
11. Given the following acid-base reaction, methoxide $\left(-\mathrm{O}-\mathrm{CH}_{3}\right)$ can be characterized as a \qquad .

a. Bronsted Acid
b. Bronsted Base
c. Lewis Acid
d. Lewis Base
e. More than one answer is correct
12. Which of the following is the most acidic hydrogen in metoprolol and why? (Hint: Element Effect)

metoprolol
(used to treat high blood pressure)
a. H attached to Oxygen; conjugate base is more stable
b. H attached to Oxygen; conjugate base is less stable
c. H attached to Nitrogen; conjugate base is more stable
d. H attached to Nitrogen; conjugate base is less stable
13. Which of the following compounds is most acidic?

A
B
C
14. Which of the following statements regarding the resonance structures of methyl acetate is false? (two of answer choices on next page)

a. Red arrows describe the movement of electrons
b. Lone pairs on the right-most oxygen are delocalized from $\mathrm{O} p$-orbital to the π^{*} (antibonding) orbital of the C-O molecular orbital
c. The least-significant contributor to the resonance hybrid is the right-most structure
d. The two C-O bonds will have a bond length in between a single and double bond.

Short Answer (4 Questions):

1. Answer the questions below regarding the structure of molecules and how they affect acidity.
a. When comparing the acidity of two different acids, one must consider the stability of the conjugate bases using four factors-what are the four factors?
b. Explain the effect of resonance and how it stabilizes the conjugate base.
c. Explain what effect causes $\mathrm{H}-\mathrm{I}$ to be more acidic than $\mathrm{H}-\mathrm{F}$ and why.
2. Naproxen sodium (generic for Aleve) is a nonsteroidal anti-inflammatory drug used for treating fever and pain. Answer the questions below regarding naproxen sodium.

Naproxen sodium

a. What is the molecular formula of naproxen sodium (not including sodium)?
b. Draw one resonance structure of naproxen sodium (not including sodium).
c. How many sp^{2} hybridized carbons are there?
d. Draw one structural isomer of naproxen sodium.
3. Menthol is a chemical extracted from mint leaves and is used as a flavoring agent and in topical medication for its cooling sensation. Answer the questions below regarding the acid-base reaction.

Menthol
a. Draw all lone pairs on menthol and methoxide.
b. Draw the curved arrow mechanism to show the flow of electrons in the reaction
c. Label the conjugate acid and conjugate base of the reaction.
d. Menthol has a pKa of 19 and methanol has a pKa of 15.7. Which side of the equilibrium will the reaction favor? Explain why.
4. The compound below is named 3-buten-2-one.

a. Draw the resonance structures of 3-buten-2-one.
b. Label the hybridization of each carbon atom.
c. Draw the resonance hybrid. Be sure to mark any atoms that have partial charges.

