INTRODUCTION

- Communication with masks has been particularly challenging due to an acoustic degradation from 3.0 up to 27 dB SPL.1,2,3,8
- Use of opaque masks also obstructs the visual cues of the mouth4,9 and reduces speech recognition in noise by 15-34%.4,7,9
- Use of transparent masks can benefit auditory-visual speech recognition in noise by 10%. Additionally, confidence significantly improved, and concentration effort significantly reduced when the speaker wore a transparent mask.10
- Furthermore, use of remote microphone technology (RMT) can significantly improve communication in noise up to 61% as measured in auditory-only conditions.11
- Use of transparent masks and RMT can result in speech perception comparable to using RMT with no mask in auditory-only conditions.12,13
- The effects of using a transparent mask combined with RMT in auditory-visual conditions are unknown.12,13
- These may be important accommodations for improving communication during the pandemic.

RESEARCH QUESTIONS

In listeners with normal hearing:
1. How was the auditory-visual speech recognition in noise when the speaker wore the ClearMask™ compared to that with the surgical mask and no mask?
2. How was auditory-visual speech recognition in noise with the use of RMT across the three listening conditions (no mask, ClearMask™, and surgical mask) different from without it?
3. How were ratings of confidence and concentration effort different when the participants received auditory-visual stimuli presented with the ClearMask™ compared to the surgical mask and with the use of RMT compared to without it?

MATERIALS

Stimuli
- Speech recognition of the last word: Six Revised Speech-in-Noise Test (R-SPIN) lists (#3-8) consisting of ten high and ten low-robustness sentences.6
- Noise: Multi-talker babble5
- Confidence and concentration effort subjective ratings: Connected Speech Test 6

Masks
- Two mask types: Surgical & ClearMask™ (Figure 1)

METHODS

Recording-Setup (Figure 2)
- Monitored live voice: ~65dB SPL
- Multi-talker babble: ~75dB SPL

Remote Microphone Technology (Figure 3)
- Phonak Roger On microphone
- Set to Automatic Mode
- Phonak Audeo Marvel hearing aid
- Programmed for a flat 60 dB HL hearing loss with proprietary fitting formula
- Installed with the Phonak Roger X(03) receiver via the Roger Installer
- Placed in Kemar’s right ear with a power dome
- Recording-Setup (Figure 2)
- Consistent Preferred Mode
- Monitored live voice: ~65dB SPL
- Activated hearing aid microphone during RMT streaming

RESULTS

For speech recognition in noise, there were significant main effects of face mask type (F(1,731)=23.69, p<0.001) and use of RMT (F(1,731)=1028.17, p<0.001). The interaction between the two main effects was significant (F(2,731)=26.29, p<0.001). The interaction between the two main effects was significant (F(2,731)=26.29, p<0.001). The confidence and concentration effort ratings were compared for:
- A rice-transformed percent correct speech recognition scores
- Confidence and concentration effort ratings
- Post-hoc t-tests with Bonferroni corrections and alpha level of p<0.05

DISCUSSION

The improvement in auditory-visual speech recognition in noise with RMT was the greatest with the surgical mask (37.7%) compared to the ClearMask™ (31.1%) or no mask (18.0%).
- As expected, the benefits of RMT in auditory-visual conditions are smaller than those in auditory-only.12,13
- Such benefits would likely be of greater importance for those with hearing loss who struggle with communication during the COVID-19 pandemic.

Limitations:
- Uncontrolled calibration of technology used for the online study, acoustic and visual quality of the auditory stimuli, and internet connections
- Potential inconsistent attention to visual cues
- Potential speaker’s articulation bias
- Sample limited to those with normal hearing
- Not representative of realistic conversation

CONCLUSION

Use of RMT and a clear mask provided significant improvement in auditory-visual speech recognition in noise. Moreover, these two accommodations significantly enhanced listener’s confidence. To reduce communication barriers, the use of RMT and clear masks is recommended in noisy settings such as hospitals, workplaces, classrooms, and public places.

REFERENCES

Figure 1. A) No mask B) Surgical mask C) ClearMask™

Figure 2. Stimuli recording setup

Participants (n=122)
- Adults aged 18 to 80 years
- Self-reported normal hearing
- English as first language
- Recruited via university research credit system, social media sites, and listserv posts
- Participants who reported having internet connection issues were excluded

Subjective ratings were on a Likert scale of 1 to 5
- Confidence: 1 – No confidence
- 2 – Some confidence
- 3 – Moderate confidence
- 4 – Extreme Confidence
- Concentration: 1 – A lot of concentration
- 2 – A little concentration
- 3 – Moderate concentration
- 4 – Extreme concentration
- 5 – No concentration at all

For confidence ratings, there were significant main effects of face mask type and use of RMT. The interaction between the two main effects was significant (F(2,731)=26.29, p<0.001). For concentration effort, the main effects of face mask type and use of RMT were also significant (F(2,731)=26.29, p<0.001), but there was no interaction between the two effects. (Figure 6) Post-hoc t-tests relevant to research question 3 resulted in the following answers:

Q3. There was increased confidence with the use of ClearMask™ compared to that with surgical mask without the use of RMT. However, there was no difference in concentration effort rating with the use of ClearMask™ vs. surgical mask despite use of RMT. Performance in all three face mask conditions was rated with significantly higher confidence and lower concentration effort with RMT than without RMT.

Figure 3. Remote microphone technology (RMT) setup

Figure 4. Online study procedure. Note: R-SPIN, Revised Speech-in-Noise Test24

Data analysis
- Three two-way repeated measures ANOVA for two within subject factors (face mask type and use of RMT) were computed for:

- Confidence and concentration effort ratings
- Post-hoc t-tests with Bonferroni corrections and alpha level of p<0.05

Figure 5. Speech-in-noise scores by each condition. Error bars represent ± one standard deviation.

Figure 6. Subjective ratings of confidence and concentration effort by each condition. Error bars represent ± one standard deviation. Note: ***p<0.001

CONCLUSION

Use of RMT and a clear mask provided significant improvement in auditory-visual speech recognition in noise. Moreover, these two accommodations significantly enhanced listener’s confidence. To reduce communication barriers, the use of RMT and clear masks is recommended in noisy settings such as hospitals, workplaces, classrooms, and public places.

Acknowledgements

Special thanks to Dr. Regina Jacob for assistance with equipment setup and data collection, and to Phonak for providing the technology.

For more information, please email Chi.Tran1@utdallas.edu