Manipulating neurons with light

Gyorgy Lur, PhD

Bio Sci H195,
University of California, Irvine
Why bother with light, isn’t pharmacology good enough?

Light gives us temporal precision!
Optogenetics
Uncaging
Channelrhodopsin basics

- Blue light (470 nm) activates Channelrhodopsin.
- Channelrhodopsin has all-trans retinal bound to it.
- The activation leads to the transport of Na+ ions from inside the cell to outside the cell.
- eYFP is also present in the cell, likely as a reporter protein.
Advanced opsins

Increased axonal targeting
Increased soma targeting
Increased speed (Cheeta) = better temporal precision
Red shifted opsins (C1V1, Crimson) -> dual color optogenetics
Step function opsins
Optically driven GPCRs

Still incomplete list:
https://web.stanford.edu/group/dlab/optogenetics/sequence_info.html
Not only for neuroscience: optically driven kinases, phosphatases etc.

Detection and manipulation of phosphoinositides
Idevall-Hagren, 2015
Optogenetic inhibitions

Step-Waveform Inhibitory ChannelRhodopsin (SwiChR)
How to target expression: stereotaxic virus injections
Where to inject?
Cell type specific expression: The Cre – loxP system

Cre (Causes recombination)

LoxP (locus of X(cross)-over in P1)
How to control gene expression with Cre-loxP?
Ex vivo optogenetics

You can cut off the cell body, still get responses
-> test inputs from far away brain regions
Comparing inputs from different regions

Lur G. unpublished
In vivo optogenetics - manipulating behavior

SFO neurons control thirst

CaMK2

Vgat

a

Trials

- light

+ light

Time (sec)

0

10

20

30

40

licking

+ light

b

light

- +

- +

- +

- +

- +

- +

- +

- +

c

Trials

1

2

3

4

5

6

7

8

9

10

11

12

d

Drinking response (%)

- light

+ light

ChR2

GFP

e

Water intake (ml)

water restricted

water satiated

water satiated

+ light

Slc32a1 (Vgat)-Cre

Control
Uncaging – basic principles

Goal: spatiotemporally precise neurotransmitter release
Mostly in vitro (but there are exceptions)

Caged compounds:
Glutamate
GABA
IP3
Ca2+
Neuromodulators
Nucleotides like ATP
mRNA & DNA
proteins
Local circuit mapping using one-photon glutamate uncaging
Supra-linear dendritic integration – two-photon glutamate uncaging

Look for work by Jeff Magee and Michael Hausser
Spatial mapping of cellular receptor composition

Lur G. unpublished
Specific control of postsynaptic glutamate receptors

-60 mV

$\Delta Ca^{2+}_{\text{NMDAR}}$

$u\text{EPSC}_{\text{AMPAR}}$

- Control
- α_1 agonist
- α_2 agonist

5 pA
10 ms

0.2 $\Delta G/G_{\text{sat}}$
100 ms

$u\text{EPSC}_{\text{AMPAR}}$ (pA)

C α_1 α_2

$\Delta Ca^{2+}_{\text{NMDAR}}$ ($\Delta G/G_{\text{sat}}$)

C α_1 α_2

Lur G. unpublished