Chasing causality – what can we learn from controlling neuronal activity?

Gyorgy Lur, PhD

Bio Sci H195,
University of California, Irvine
Necessary and sufficient

A -> B -> C

A -> X -> X B is necessary
A -> X -> C B not necessary
X -> B -> C B sufficient
X -> B -> X B not sufficient

In formal logic: true N&S is that it implies equivalence between the two statements, allowing one to be a definition of the other

→ indispensable and inducing

Yoshihara & Yoshihara 2018
What’s the point?

To establish causality observation is not sufficient, we need to manipulate brain activity
The **scientific method**: hypothesis -> experiment

Causality vs correlation

![Graph showing the correlation between age of Miss America and murders by steam, hot vapours, and hot objects](http://www.tylervigen.com/spurious-correlations)
The lack of pirates caused global warming!
How do we test causality?

Manipulate brain activity in a controlled manner

... GLHF ...

How to control neuronal activity

1. Lesion
 1. TBI
 2. Stroke
 3. Artificial (phototrombic) stroke
 4. Freezing

2. Inactivation
 1. Pharmacology
 1. Permanent (e.g.: N-methyl-dl-aspartic acid)
 2. Temporary (e.g.: muscimol)
 2. Cooling
 3. Pharmacogenetics (DREADDS)
 4. Light

3. Activation
 1. TMS
 2. Electrical stimulation
 1. Peripheral (e.g: driving a cockroach)
 2. Central stimulation of brain regions
 1. During surgery
 2. Parkinson's treatment (DBS)
 3. Pharmacogenetics (DREADDS)
 4. Light
History of inactivation is a history of injuries

~1600 BC: Edwin Smith Papyrus: classification of head injuries

1850’s: Phineas Gage: severe, possibly temporary personality change

20th century: lesion studies
causes: injury, inflammation, tumor, ischemic stroke etc.
frontal lobotomy to “cure” mental illness

epilepsy: corpus callosotomy
(Dr. William P. van Wagenen and Roger W. Sperry)
The Legacy of Patient H.M. for Neuroscience – Squire 2008

Loss of recent memory after bilateral hippocampal lesions.

SCOVILLE WB, MILNER B, 1957

- Patient H.M.: severe epilepsy following childhood bike accident
- Treatment: bilateral hippocampal lesion at age 27 (actually: hippocampus, amygdala, and the adjacent parahippocampal gyrus)
- “side effect”: severe memory impairment: no memory consolidation
- intact intellectual and perceptual functions
Brain lesions studies in humans in the 21st century

Goal: link an identified brain region to function in behavior

Value: there are not many non-invasive ways to manipulate neuronal activity in humans, lesions are a crucial tool supplementing imaging approaches.

Difficulty: old lesion studies provide inaccurate descriptions
modern lesion studies: often single patient, huge variability, no reproducibility, thus the data may not generalize

Solutions: increased sample sizes (USA: 800,000 diagnoses of stroke)
combination with imaging methods for better documentation
meta-analysis algorithms for better statistical power

What can be tested:
1) Are brain networks redundant (several options for same function)?
2) What happens to brain networks (fMRI) when a node is lesioned?
Controlled inactivation

1. Pharmacology
 1. Permanent (e.g.: N-methyl-dl-aspartic acid, phototrombic lesion)
 2. Temporary (e.g.: muscimol)
2. Cooling
3. Pharmacogenetics (DREADDS)

Goal: is this brain region / neuronal population “necessary”?

Approach:
1-2: non-selective, larger region
3: can be cell specific (Cre-loxP system)

TTC (2,3,5-triphenyltetrazolium chloride) staining visualizes hypoxic brain tissue
Altering behavior via temporary inactivation of brain regions

Trace and contextual fear conditioning are impaired following unilateral microinjection of muscimol in the ventral hippocampus or amygdala, but not the medial prefrontal cortex. Gilmartin et al., 2012
Inactivating specific synapses with DREADDs

Chemogenetic Synaptic Silencing of Neural Circuits Localizes a Hypothalamus→Midbrain Pathway for Feeding Behavior. Stachinak et al., Neuron 2015
Controlled activation of neurons

1. TMS
2. Electrical stimulation
 1. Peripheral (e.g.: driving a cockroach)
 2. Central stimulation of brain regions
 1. During surgery
 2. Parkinson's treatment (DBS)
3. Pharmacogenetics (DREADDS)

Goal: is this brain region / neuronal population “sufficient”?

Approach:
1: can be reasonably constrained with small electrodes or in specific brain regions (nuclei)
2: can be cell specific (Cre-loxP system)
Transcranial magnetic stimulation

Non-invasive (can be used in humans)
Changing magnetic field generates electrical current via electromagnetic induction
Has diagnostic and therapeutic potential, but may cause seizures and fainting.
Causes severe physical discomfort.

“Some of the studies have shown promising but not conclusive evidence for the efficacy of TMS in depression. But TMS has not been shown to be effective in the treatment of obsessive compulsive disorder, posttraumatic disorder, or schizophrenia. The patient sample size has been a cause of concern in most studies.”

Electrical brain stimulation

Electrical discharges delivered to defined brain areas in awake patients

Goal is to map their functional involvement in sensation and movement, or cognitive functions such as language and memory.

Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. J Parvizi 2010
Electrical activation: antidromic identification of neuronal projections

A

stimulation

orthodromic activation

orthodromic activation

MD

SC

FEF

recording

Layer IV neurons:
Unknown types

Layer V neurons:
Known pyramidalis

B

Orthodromic

Stimulus artifact

Evoked spikes

1 ms

C

Antidromic

Stimulus artifact

Evoked spikes

Natural spikes

Passes collision test

Natural spikes

Fails collision test
DREADD activation increases water and salt consumption

In any inactivation experiment, what we really study is how the rest of the brain compensates for the loss of a functional part of the nervous system.