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Abstract

Fields of machine learning and artificial intelligence are undergoing transforma-

tive advances and growth. This article presents a vision for the field of systems

and control that simultaneously leverages these advances to more fully engage

with them and spur new expansive research directions in systems and control.
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How might the current and expected future advances in machine learning

and artificial intelligence lead to new opportunities for the systems and control

community? We have been motivated by this timely question to articulate an

initial vision in this brief essay. Right at the outset, we would like to state

that the discussion below is far from comprehensive. Rather, the purpose is to

present a perspective and some initial thinking on how the systems and control

community could engage in and help shape this emerging future more fully.

Machine Learning and Artificial Intelligence Context:

Since its inception, the field of artificial intelligence (AI) focused on under-

standing how computers can mimic human brains in the context of decision

making. Coined by John McCarthy in 1956, AI is a very general field covering

disparate topics such as search, planning, reasoning, learning, natural language

processing, perception, vision, etc. Machine learning, coined by Arthur Samuel,
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focuses on achieving AI through training and learning, and has its roots in sta-

tistical learning theory. Over the last decade, great advances have been made

in AI and ML in several dimensions: theory, application, and implementation.

Specifically in the context of ML, deep learning architectures, algorithms

and techniques have created powerful tools to learn representations of large

volumes of data in multiple layers of representation [1]. These tools appear

to be very successful in learning complex functions and discovering intricate

structures in high-dimensional data. They have shown superior performance

in image and speech recognition and are being applied in a wide variety of

problems: drug discovery, particle physics, astronomy, and biomedicine. While

it is difficult to summarize (and beyond the purpose and scope of this paper,) all

advancements in ML, there are several directions that are particularly relevant

to the subsequent discussion.

1. High dimensional statistics that focuses on computational and statistical

issues pertaining to learning high dimensional sparse sets of parameters

from observations [2]. This development ties well with research areas in

compressive sensing, but expands the results to include more elaborate

sparse models such as sparse graphs.

2. Online learning which addresses sequential learning and decision making

in bandit problems [3]. Developments in this direction resulted in differ-

ent algorithms under different information structures that can guarantee

asymptotic optimality. Regret-based algorithms are one outcome of these

developments.

3. Discovery of structural and latent variables using spectral and tensor

methods [4]. Such an approach became popular in the context of topic

modeling and mixtures of Gaussian models where the underlying mixture

is not a priori known.

4. Optimization for ML including the exploitation of randomness in the con-

text of maximum likelihood learning for non-convex network models [5]

and stochastic gradient algorithms in the context of deep learning [6, 7].
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Advancements in these areas have substantially influenced many application

domains.

More broadly, the confluence of insights and techniques from neuroscience,

cognitive science, reinforcement learning (RL), and deep learning (DL) has led

to very impressive progress in ML and AI with amazing achievements in cham-

pionship games and demonstration of human level control by an artificial agent

[8, 9]. Increasing computational power (thanks to Moore’s Law progress), avail-

ability of large amounts of data, and development of more effective algorithms

have been critical to many of these successes and will be increasingly even more

important to continuing progress [10, 11]. Driven by the excitement of progress

and potential for major benefits, there is a flood of interest, and correspond-

ing investments, in ML and AI from the academic, industrial and government

sectors [12]. Yet, there are significant weaknesses and issues that need to be re-

solved for future progress. These include insufficient and incomplete theoretical

foundations, need for large amounts of data, lack of robustness and vulnerability

to adversarial attacks, lack of transparency and explainability, biases resulting

from algorithms and data, etc.

It is our position that AI should entail some sort of learning combined with

decision making. However, in many application areas, AI refers to decision

making more broadly. For many of these AI systems, their ability to learn, es-

pecially in real-time, is quite limited. As Brooks observes in his very interesting

critique of exaggerated AI predictions [13], “Today’s machine learning is not at

all the sponge-like learning that humans engage in, making rapid progress in a

new domain without having to be surgically altered or purpose-built. ... When

humans play a game, a small change in rules does not throw them off. Not so for

AlphaGo or Deep Blue.” While the latest AI systems such as AlphaGo Zero [14]

exhibit certain impressive learning abilities, it is far from clear whether these

systems can learn to adapt to and deal with rapid and unforeseen changes in

the environment.

Control Systems: Control systems have a deep, broad and strong base of

foundational knowledge developed over the last 60 years with major emphasis
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on decision making under uncertainty. Dynamic systems modeling, structural

properties, model reduction, identification, stability, feedback, optimality, ro-

bustness, adaptation, fault tolerance, and architecture have been among the

central concerns on the theoretical side. These issues have been explored in

a wide variety of settings: linear, nonlinear, stochastic, hybrid, distributed,

supervisory, and others. Applications have been wide ranging: aerospace, au-

tomotive, manufacturing, chemical process, energy, power, transportation, etc.

While there is a very rich history, the future is just as promising as there are

a multitude of directions for future theoretical and applications research [15].

Despite all the progress in various subfields of systems and control, much re-

mains to be done to satisfactorily address control of large, complex, distributed

dynamical systems under rapid changes in the environment and high levels of

uncertainty.

Future This is truly an opportune moment to develop a forward looking

vision that can inspire talented researchers for the next decade or longer. On

the one hand, a major goal of AI is to build machines that can learn and think

for themselves [16], including having imagination, reasoning, planning, etc. On

the other hand, we have a rich body of knowledge in control systems. The

field of control can both benefit from and influence the ongoing revolutionary

advances in ML and AI. These advances in ML and AI are going to be driven

by the large increases in computation power and data, intense interest across

the world, and large investments in these fields across academic, industrial and

government organizations. By leveraging these ongoing trends and advances in

ML/AI, we can aim to have significantly more powerful and versatile control

systems. For this, we would need to define specific goals that are currently

unachievable with existing control techniques but could potentially be achieved

by leveraging ML/AI advances. Such goals would likely be driven by major

application areas for control. They would have implications and opportunities

for theoretical developments in control. On the other side, we can identify ideas,

tools and techniques from control systems that have the potential to advance AI

in its quest of building machines that learn and think for themselves. Examples
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include principles and techniques from robust and adaptive control, stochastic

control, dynamic programming, system identification, model predictive control,

decentralized and distributed control, and agent based control.

Of course, there are historic connections between learning, artificial intel-

ligence, and control systems going back to the 60’s. Research fields such as

intelligent control and neural networks for control arose from these long stand-

ing connections. Closer to the recent developments in ML and AI that are

the main focus of this paper, there are deep connections between RL [17] and

stochastic control [18]. There are more recent and much less investigated con-

nections between learning in sensorimotor neural systems [19, 20] and controls,

e.g., the role of forward and inverse models for control in the central nervous

system, emulation theory of representation that builds on control and Kalman

filtering, etc. More generally, very recent developments in neuroscience such as

the free energy principle and a unified brain theory [21] are deeply connected

with central ideas in systems and control but have received not much atten-

tion in controls community and where further explorations are likely to be very

fruitful.

In a more speculative and somewhat controversial longer-term direction,

while there is acceptance within the AI community that rich internal models

are critical to human like learning and decision making and that the learning

processes must be informed and constrained by prior knowledge, there is consid-

erable debate within the AI community on whether such internal models should

be configured by human designers or should be learned by the AI agent de novo

[16, 22]. (Such debates are not far from the Chomsky-Skinner debate which ar-

ticulated a fundamental dichotomy in understanding language acquisition; one

side that is based on the learning of a fixed architecture in the brain (Chomsky)

and the other that is based on statistical interpretation of the relationships be-

tween the past and present behavior (Skinner) [23, 24].) Debates around these

questions in AI are far from settled and the research field is rich with open

questions and may turn out to offer new opportunities, in view of the centrality

of model building aspects in the debates, for systems and control community to

5



engage, contribute, and benefit.

It is worthwhile emphasizing that a substantial part of control theory focuses

on fundamental limits of stability and performance. For example, the theory ad-

dresses questions such as characterizing the minimal information needed about

a process to control it (say to achieve a desired objective). At the same time,

statistical learning theory (both standard and high dimensional) focuses on ob-

taining information-theoretic limits of achievable model accuracy from data.

Can these two seemingly disparate paradigms be combined to provide rigorous

fundamental limits of certain AI systems? More so, can such understanding

improve the algorithmic aspects of designing AI systems?

Potential Research Directions: There is potentially a very rich and at-

tractive research agenda that arises from the above considerations. What will

turn out to be the most important promising research directions will only be-

come clear with the passage of time as research community explores various

possibilities and novel discoveries come into focus. Some initial ideas for inter-

esting research explorations are briefly outlined below:

• Traditionally, control systems analysis and design has been based on de-

tailed mathematical models of the system and the environment and with

fairly well-understood sources of uncertainty. These models are typically

described using differential equations, discrete-event formalisms, Markov

processes, etc. Construction of such models requires highly specific scien-

tific and engineering knowledge, data, and domain expertise. By contrast,

ML and (some) AI methods aim to learn models (and control actions)

directly from data and experiments. Clearly, in areas where detailed tra-

ditional control-oriented models are feasible and have already been de-

veloped, there is modest scope for ML and AI techniques such as use of

deep neural networks for function approximation or rules in discrete-event

systems. However, a much larger opportunity arises in areas where (a)

such detailed, mechanistic mathematical models do not exist, and/or (b)

where performance goals are described at a high level, and/or (c) where
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the amount of uncertainty is significantly greater with unknown sources,

and/or (d) where the control goals and tasks have high diversity. In such

contexts, how can we rethink and re-conceptualize the role of models in

control systems in light of what has been learnt in ML and AI in recent

years? The big opportunity here for the research community is to cre-

ate new problem formulations where background foundational knowledge

from control might be creatively mixed with new paradigms in ML and

AI to open new application domains or extend well beyond current per-

formance objectives, especially for rapid changes in the environment and

high levels of uncertainty. Application domains for systems and control

are numerous and diverse [15]. In many of these domains, e.g., trans-

portation, aerospace, biomedical, manufacturing, energy, to name a few,

the above-mentioned considerations are applicable. Thus, the potential

for future research along this line of thinking is very high.

One example that demonstrates this interaction is the relationship be-

tween the recently developed spectral methods for machine learning and

the classical model reduction techniques that are widely explored in the

context of dynamic systems’ simulation and control. In the absence of

prior characterizations of model sparsity, estimating a low dimensional

model directly from data can have powerful generalization properties. Ex-

ploring such approaches for unstructured models (e.g., Hidden Markov

Models, Deep Networks) will allow for a principled approach in designing

algorithms for data-driven decision making.

• Neuroscience and cognitive science insights have been key drivers in cer-

tain major breakthroughs in AI [9]. The key goal there has been to build

machines that can learn and think for themselves [16]. Historically, cy-

bernetics was conceived by Norbert Wiener [25] as “the scientific study of

control and communication in the animal and the machine”. Over time,

this connection between control and cybernetics did not develop as fully as

the mathematical control theory paradigm [26]. Can we leverage the new
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insights at the confluence of neuroscience, cognitive science, reinforcement

learning, and AI to conceptualize new architectures for versatile, intelli-

gent and adaptive controllers that work across large diverse domains with

improving performance while maintaining safety? Here the big opportu-

nity is to go significantly beyond existing frameworks and paradigms for

adaptive control and realize the vision behind Wiener’s original cybernet-

ics ideas thereby achieving much higher levels of autonomy, robustness,

and adaptive performance.

Stepping back to specific applications for concreteness, consider the prob-

lem of designing neural prosthetics (e.g., to compensate for spinal cord

injuries). Here we can greatly benefit from the development of neuromor-

phic computing that integrates well into effective control architectures.

Such architectures should embed biologically-sound signal representations

to allow describing high-level objectives and to translate them to specific

control strategies.

• Recent work in AI has led to very impressive results on “human-level con-

trol” using an artificial agent that incorporates reinforcement learning and

deep Q-network on a large variety of video games [8]. A key challenge here

is combine high-dimensional sensory inputs into learning control actions.

Thus, the ability of the artificial agent to achieve performance that ex-

ceeds all prior algorithms and a level that is comparable to professional

human tester can be viewed as an achievement in control performance.

This advance in AI creates an opportunity to examine the analysis and

design of such artificial agents from a control theory perspective. A close

collaboration between reinforcement learning, artificial intelligence, and

control theory communities might lead to important advances in theory

as well as applications.

In the context of smart services (e.g, transportation, power), humans con-

stitute an essential component of the system. Mechanism design aims

to create incentive compatible strategies that attempts to drive human
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behavior towards a desirable equilibrium. The absence of mechanistic

models describing how people behave in response to incentives highlights

the importance of real-time learning and adaptations for such systems.

This presents another opportunity for bringing together cognitive science

and game theory to address questions and challenges pertaining to incen-

tivizing human behavior.

• While there have been impressive advances in deep learning, many aspects

remain only partially understood. For example, some recent results show

that deep neural networks easily fit random labels [27]. This key finding

along with additional reasoning leads the authors of [27] to state, “...

poses a conceptual challenge to statistical learning theory as traditional

measures of model complexity struggle to explain the generalization ability

of large artificial neural networks”. Thus, there is considerable gap in

understanding why deep neural networks have small generalization error

in many real world applications. Can methods and tools from systems

and control theory offer new analytical perspectives and understanding of

this empirical fact? In a related direction, it is now well-known [28] that

saddle points in high-dimensional non-convex optimization are a critical

barrier in optimization and training of deep neural networks. There is thus

an opportunity for systems and control theory community to contribute

innovative non-convex optimization solutions to this saddle point problem.

• It is known, and evidence continues to grow, that many of the machine

learning algorithms are not robust [29]. For example, image recognition

algorithms using deep neural networks can lead to wrong classification

if the image is altered in even small ways. This lack of robustness is

potentially a major problem, especially if there are adversaries who intend

to cause cyber-physical sabotage of intelligent autonomous systems [30].

In order for a system to learn and make good decisions in real time, it

has to keep a good account of the part of the process it is not able to

model (this includes unexplored dynamics and adversaries). Estimating
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such uncertainty is rooted in the model selection process which many AI

systems are envisioned to choose on the fly. What are the opportunities to

use insights from robust, adaptive stochastic control to advance machine

learning and artificial intelligence by addressing these limitations?

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)

436–444.

[2] J. Tropp, An introduction to matrix concentration inequalities, Founda-

tions and Trends R© in Machine Learning 8 (2015) 1–230.

[3] A. Rakhlin, K. Sridharan, A. Tewari, Online learning via sequential com-

plexities, Journal of Machine Learning Research 16 (2015) 155–186.

[4] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, M. Telgarsky, Tensor de-

compositions for learning latent variable models, Journal of Machine Learn-

ing Research 15 (2014) 2773–2832.

[5] P. Zwiernik, C. Uhler, D. Richards, Maximum likelihood estimation for

linear gaussian covariance models, Journal of the Royal Statistical Society:

Series B 79 (2017) 1269–1292.

[6] A. Rakhlin, M. Raginsky, M. Telgarsky, Non-convex learning via stochas-

tic gradient langevin dynamics: A nonasymptotic analysis, Conference on

Learning Theory (2017) 1674–1703.

[7] M. Hardt, B. Recht, Y. Singer, Train faster, generalize better: Stability of

stochastic gradient descent, International Conference on Machine Learning

(2016) 1225–1234.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,

et al., Human-level control through deep reinforcement learning, Nature

518 (7540) (2015) 529–533.

10



[9] D. Hassabis, D. Kumaran, C. Summerfield, M. Botvinick, Neuroscience-

inspired artificial intelligence, Neuron 95 (2) (2017) 245–258.

[10] T. Simonite. How AI Can Keep Accelerating After Moore’s Law [online]

(2017).

[11] J. Dean, D. Patterson, C. Young, A new golden age in computer architec-

ture: Empowering the machine learning revolution, IEEE Micro PP (2018)

1–1.

[12] J. Bughin, E. Hazan, S. Ramaswamy, M. Chui, T. Allas, P. Dahlström,

N. Henke, M. Trench. Artificial intelligence–the next digital frontier [online]

(2017).

[13] R. Brooks. The seven deadly sins of AI predictions [online] (2017).

[14] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of go

without human knowledge, Nature 550 (7676) (2017) 354–359.

[15] F. Lamnabhi-Lagarrigue, A. Annaswamy, S. Engell, A. Isaksson, P. Khar-

gonekar, R. M. Murray, H. Nijmeijer, T. Samad, D. Tilbury, P. Van den

Hof, Systems & control for the future of humanity, research agenda: Cur-

rent and future roles, impact and grand challenges, Annual Reviews in

Control 43 (2017) 1–64.

[16] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, S. J. Gershman, Building

machines that learn and think like people, Behavioral and Brain Sciences

40 (2017) 1–72.

[17] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT

press Cambridge, 1998.

[18] D. P. Bertsekas, J. S. Tsitsiklis, Dynamic Programming and Optimal Con-

trol, Athena scientific Belmont, MA, 1995.

11

https://www.technologyreview.com/s/607917/how-ai-can-keep-accelerating-after-moores-law/
https://www.mckinsey.de/files/170620_studie_ai.pdf
https://www.technologyreview.com/s/609048/the-seven-deadly-sins-of-ai-predictions/


[19] D. M. Wolpert, Z. Ghahramani, J. R. Flanagan, Perspectives and problems

in motor learning, Trends in cognitive sciences 5 (11) (2001) 487–494.

[20] R. Grush, The emulation theory of representation: Motor control, imagery,

and perception, Behavioral and brain sciences 27 (3) (2004) 377–396.

[21] K. Friston, The free-energy principle: a unified brain theory?, Nature Re-

views Neuroscience 11 (2) (2010) 127–138.

[22] M. Botvinick, D. G. Barrett, P. Battaglia, N. de Freitas, D. Kumaran,

J. Z. Leibo, T. Lillicrap, J. Modayil, S. Mohamed, N. C. Rabinowitz, et al.,

Building machines that learn and think for themselves, Behavioral and

Brain Sciences 40 (2017) 26–28.

[23] B. F. Skinner, Verbal Behavior, B.F. Skinner Foundation, 2014.

[24] N. Chomsky, A review of bf skinner’s verbal behavior, Language 35 (1959)

26–58.

[25] N. Wiener, Cybernetics or Control and Communication in the Animal and

the Machine, MIT Press, 1961.

[26] R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in Mathematical System

Theory, McGraw-Hill New York, 1969.

[27] C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understand-

ing deep learning requires rethinking generalization, arXiv preprint

arXiv:1611.03530.

[28] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio,

Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization, in: Advances in neural information processing

systems, 2014, pp. 2933–2941.

[29] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low, R. Fergus, Intriguing properties of neural networks, arXiv preprint

arXiv:1312.6199.

12



[30] M. Hein, M. Andriushchenko, Formal guarantees on the robustness of a

classifier against adversarial manipulation, in: Advances in Neural Infor-

mation Processing Systems, 2017, pp. 2263–2273.

13


