Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques

Ramin Bostanabad a, Yichi Zhang a, Xiaolin Li a, Tucker Kearney a, L. Catherine Brinson a,b,c, Daniel W. Apley d, Wing Kam Liu a,c, Wei Chen a,b,⇑

aDepartment of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
bDepartment of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
cTheoretical & Applied Mechanics, Northwestern University, Evanston, IL 60208, USA
dDepartment of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208, USA

ABSTRACT

Building sensible processing-structure-property (PSP) links to gain fundamental insights and understanding of materials behavior has been the focus of many works in computational materials science. Microstructure characterization and reconstruction (MCR), coupled with machine learning techniques and materials modeling and simulation, is an important component of discovering PSP relations and inverse material design in the era of high-throughput computational materials science. In this article, we provide a comprehensive review of representative approaches for MCR and elaborate on their algorithmic details, computational costs, and how they fit into the PSP mapping problems. Multiple categories of MCR methods relying on statistical functions (such as n-point correlation functions), physical descriptors, spectral density function, texture synthesis, and supervised/unsupervised learning are reviewed. As no MCR method is applicable to the analysis and (inverse) design of all material systems, our goal is to provide the scientific community with a close examination of the state-of-the-art techniques for MCR, as well as useful guidance on which MCR method to choose and how to systematically apply it to a problem at hand. We illustrate applications of MCR on materials modeling and building structure-property relations via two examples: One on learning the materials law of a class of composite microstructures, and the second on relating the permittivity and dielectric loss to a structural parameter in nanodielectrics.

© 2018 Elsevier Ltd. All rights reserved.

Contents

1. Introduction ... 2
2. Definition of technical terms ... 4
3. MCR methods ... 6
 3.1. Statistical functions ... 6
 3.1.1. Characterization ... 6
 3.1.2. Reconstruction ... 8
 3.2. Physical descriptors ... 12

⇑Corresponding author at: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.
E-mail address: weichen@northwestern.edu (W. Chen).

https://doi.org/10.1016/j.pmatsci.2018.01.005
0079-6425/© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The heart of computational materials science lies in providing fundamental insights and understanding of materials behavior and properties across different scales, which further enables cost-effective design of materials with targeted properties. The significance of this task is highlighted by the Materials Genome Initiative [1–4] and the emergence of computational tools and frameworks such as materials by design [5,6], microstructure sensitive design [7], and integrated computational materials engineering (ICME) [8]. As a material’s morphology heavily affects its properties [9,10], the central theme of these frameworks is on inverse materials design by elucidating the link between processing, structure, and properties (aka PSP links) [5,11]. The fact that such inverse mappings are not unique (see Fig. 1a), introduces both opportunities and challenges for developing PSP mapping techniques.

Evidently, experimental (aka Edisonian or cause-effect [6,12]) analysis, design, and discovery of materials is costly and time-consuming. This noticeably limits the technological and industrial sectors as they are heavily connected with material systems and their growth and long-lasting success hinges on efficient development and deployment of superior materials [1–3,6]. Such a strong connection between materials and industry’s progress, demands that new material systems consistently demonstrate superior properties because significant difficulties and expenses are incurred when the materials of an established technology must be altered to, e.g., address environmental concerns or meet industry or government specifications. Materials design is additionally hampered by the fact that it must be, to some extent, compatible with existing production technologies. The so-called high-throughput computational materials science [13] provides an appealing alternative to the expensive experimental approach for building PSP links and materials design (see Fig. 1b). Here, the central concept is to first create a massive database that stores microstructural characteristics and properties of materials and then intelligently interrogate this dataset to gain insights and use those new insights to discover materials with desired properties. To this end, many existing works apply predictive models including neural networks [14] or support vector machines [15] to material databases for building PSP links and, subsequently, estimate the material properties where no data (either experimental or computational) are available [16–20]. In the high-throughput fueled frameworks, it is highly desirable to quantitatively characterize the microstructure to (i) increase the predictive power of such models, and (ii) achieve a deeper understanding on how the microstructure, on the one hand, is formed by composition and processing history [21,22] and, on the other hand, affects the material properties. Realizing that in most material systems the corresponding microstructure embodies some degree of randomness (e.g., grain size distribution in crystals or particle dispersion in fibrous composites), it is evident that...
the characterization must, in general, be statistical. The characterized information, in turn, can be used to computationally reconstruct new microstructures to augment the available imaging data or even guide future imaging experiments (e.g., to determine the required imaging scale and resolution).

Computational microstructure characterization and reconstruction (MCR) consists of statistical methods to (i) quantitatively represent the microstructure (and its possible inherent randomness), and (ii) build an ensemble of statistically equivalent microstructure [23] samples. MCR allows one to systematically go beyond the limits where the empirical data are available and build forward and inverse PSP links to find the processes (structures) that result in a particular structure (property), see Fig. 1a.

In this article, we report on recent advances in MCR of random heterogeneous materials, an essential component in the computational and data-driven paradigms of materials science. The focus is specifically on methods developed to investigate the PSP links. In this context, while characterization refers to the statistical representation of a material's morphology via a (finite set of) characteristic function(s) and/or feature(s), reconstruction is the process of generating a (set of) microstructure(s) whose morphology embodies a (set of) prescribed characteristic(s). Characterization and reconstruction are complementary and, together, provide the means to delve deeply into the detailed morphological characteristics at the various length scales of a material's hierarchical structure through imaging data. According to [24], such data "offers considerably more than merely the illustration of a material system; in fact, it contains quantitative structural and functional information. This information is spatially distributed and often has a complex multidimensional nature". MCR is of common use in:

- Predictive materials modeling [23,25–28], i.e., finding the materials law that describes the homogenized response of a heterogeneous material (see Section 5.1 for an example).
- Design of material systems with targeted properties [29–33] (see Section 5.2 for an example).
- Transformation and preparation of experimental data for computer simulations [34,35]. Examples include building a representative microstructure image from a set of small micrographs [36], reconstructing 3D structures from 2D images [37,38], and recovering the original microstructure image using the results of X-ray diffraction experiments [39].
- Determination of feasibility and/or sufficiency of a given set of characteristic functions [40–42]. Quantifying the high-dimensional morphology of a microstructure with parametric functions is particularly useful in that it, e.g., enables building PSP links or helps to identify materials with the same underlying randomness (see Section 3.1.1 and Fig. 3). However, a given parametric function might not sufficiently characterize a microstructure or even necessarily correspond to a feasible one. In such cases, a reconstruction algorithm can be used to determine the feasibility and/or sufficiency (see Section 3.1 for more details).
- Microstructure-induced uncertainty quantification and propagation [23,43–46]; Microstructure randomness manifests itself in probabilistic material properties and performance; necessitating the study of, e.g., mean and variability behavior and, more importantly, rare events [47–49]. To enable such computational studies, one must reconstruct an ensemble of microstructure samples (that capture the randomness), estimate their properties (e.g., via the finite element method, FEM), and then proceed to build PSP links and conduct statistical analyses (such as sensitivity analysis [50], model calibration and bias correction [45], and uncertainty quantification and propagation [33,43,46,51,52]).
From a recent historical standpoint, statistical microstructure characterization can be traced back to the early works of Debye and co-workers [53,54] and then Corson [55–58], where the scattering power for electromagnetic radiation (resulting in the two-point correlation function) was used to characterize the inhomogeneities in porous media. Later, reconstructing such media by level-cutting random fields (to realize the microstructures corresponding to the characterized information) was proposed by Joshi [59] and then extended by Quiblier [60]. To address the shortcomings associated with the use of random fields in reconstruction (detailed in Section 3.3), Hazlett [61] and then Rintoul and Torquato [62] used an optimization approach based on simulated annealing. To enable the use of statistical functions other than the two-point correlation in characterization, this optimization-based reconstruction scheme was subsequently generalized by Yeong and Torquato [39,63] to the stochastic reconstruction (aka YT) method. Because the optimization process in the YT method is expensive and the reconstruction quality heavily depends on, among other things, the choice of the statistical functions used in the characterization, considerable research has been conducted to improve the YT method (detailed in Section 3.1.2.2). Due to these and other shortcomings of the YT method (see Section 3.1.2), other approaches have been developed for efficient MCR in different material systems. These approaches commonly use physical descriptors (especially for the analysis and design of crystalline or particulate microstructures), supervised/unsupervised learning techniques (which are computationally efficient and applicable to a wide range of materials), spectral methods (for modeling the microstructure as a realization of a random field), and texture synthesis (for synthesizing a microstructure based on an exemplar). In Section 3, we elaborate on the details of these approaches.

As described in Section 3, several methods have been developed for MCR and the optimal choice for a given problem depends on the material system, properties of interest, the length scale, as well as a balance between accuracy and cost. As none of these methods are applicable to all problems (see above and Section 5 for some examples), a researcher should make an informed decision for his/her MCR task. To aid in this end, we review the prevailing methods, comment on their advantages and disadvantages, and provide some examples and comparisons. In Section 2, we define the technical terms used in the literature and throughout this manuscript. In Section 3 we describe various MCR methods and elaborate on their algorithmic details, computational costs, and applicability. We compare the methods in Section 4 and provide two material examples in Section 5. Conclusions are provided in Section 6.

2. Definition of technical terms

Several terms are frequently used in the computational MCR literature. Before diving into the technical descriptions in Section 3, in this section we define these terms and provide the relevant mathematical equations.

Characterization: Statistical quantification of the morphology of a microstructure. The quantification needs to be statistical to account for the (possible) inherent morphological randomness. Complete characterization is often very difficult, if not impossible, and might not actually be necessary (see Section 5.1 for an example). Correlation functions (e.g., two-point correlation function) and physical descriptors (e.g., volume fraction and average particle or grain size) are commonly used in characterization.

Ensemble: A collection of samples that are statistically equivalent. The ensemble members might have different morphological (fine) details but are identical from a coarse-scale point of view and have similar effective properties [64]. Consider the sample space S of all statistically equivalent microstructures where the individual members and their probability density functions are represented by, respectively, x and $p(x)$. The ensemble average of the function $q(x, z)$ at x over this sample space equals [65]:

$$
\bar{q}(x) = \int_S q(x, z)p(z)dz,
$$

(2-1)

q is, basically, a property or quantity of interest (such as the effective Young’s modulus) that depends on the microstructure as well as some other parameters collectively denoted by x. An ensemble of statistically equivalent samples corresponds to, for instance, a collection of samples taken from a process line operating under stable processing conditions or a number of small samples taken from a large homogeneous one [64].

Ergodic hypothesis: A hypothesis implying that monitoring a stochastic system (e.g., an evolving microstructure) over a long period of time would provide the same statistical measures as taking many independent realizations of that system over time [7]. More formally, it states that all the microstates available to an ensemble of samples are available to every sample of the ensemble [64]. This hypothesis allows investigating one arbitrarily chosen, averaged function would be independent of time [7]. More formally, it states that all the microstates available to an ensemble of samples are available to every sample of the ensemble [64]. This hypothesis allows investigating one arbitrarily chosen, averaged function would be independent of time [7].

$$
\bar{q}(x) = \langle q(x, z) \rangle \sim \lim_{V \to \infty} \frac{1}{V} \int_V q(x + y, z)dy,
$$

(2-2)

where $\langle \cdot \rangle$ denotes the expectation operator. One way to fulfill this condition is to presume that the coarse-scale structure can be modeled by a self-repeating unit cell (Ω, see Fig. 2) with periodic boundary conditions (PBC) [66]:

$$
\lim_{V \to \infty} \frac{1}{V} \int_V q(x + y, z)dy \sim \frac{1}{|\Omega|} \int_{\Omega} q(x + y, z)dy,
$$

(2-3)
Often only a single realization of the process can be observed (i.e., a single microstructure sample is available), and so the ergodic hypothesis is assumed to hold rather than tested.

Microstructure: The structure of a material whose scale is (i) large enough to contain sufficient local morphological details, but (ii) much smaller than the characteristic length of the sample [9]. Microstructure is a general term that describes the structural features and topological arrangements at a particular length-scale (e.g., nanoscale or macroscale). For instance, in multiscale finite element analysis (FEA) of a material system, each material (aka integration or Gauss) point at the coarse scale (e.g., macroscale) is a realization of a structure with finer resolution (e.g., microstructure) that passes the constitutive behavior to the coarse scale (see Fig. 2). In continuum mechanics literature, a microstructure is called, depending on its size, either an RVE or an SVE [23,67,68].

Random field: An infinite collection of random variables which are indexed in time or space and share a common probability model [69]. Modeling a material system as a random field (aka stochastic or random process), would constitute that the microstructure images corresponding to that material system can be thought of as independent realizations from that random field.

Random heterogeneous materials: Materials that are comprised of different constituents (e.g., a composite) or a single constituent but in different arrangements (e.g., a polycrystal with multiple crystallographic orientations) [9,62]. The local morphological details of such materials often indicate some degree of randomness when it can only be characterized statistically (hence the word random) [70]. Composites, concrete, block co-polymers, polycrystals, and sandstone are examples of synthetic and natural random heterogeneous materials.

It is noted that, to include ordered microstructures (such as highly textured metallic polycrystals or ordered block co-polymers) in this definition as well, the statistical characterization must identify their randomness degree as zero or negligible.

Reconstruction: Construction of a (set of) statistically equivalent microstructure image(s) given some statistical characterization. Such statistical characterizations are either derived from an actual material sample or defined by the user. In the latter case, the user must ensure that the statistics correspond to a feasible structure.

Representative volume element (RVE): A finite region of a material sample which is (i) large enough to be representative of the entire sample’s characteristics, and (ii) has (nearly) the same effective properties as the entire sample [71,72]. With this definition, the size of the RVE clearly depends on the material system as well as the effective property under consideration [65,73–82].

Statistical equivalency: The state where statistical measures of two (or more) microstructures match. This condition, when met, would imply having similar effective properties (the opposite of this statement generally does not hold).

Statistical homogeneity: The condition when the calculated statistics for a microstructure are independent of the coordinate system translation.

Statistical isotropy: The condition when the calculated statistics for a microstructure are independent of the coordinate system rotation.

Statistical volume element (SVE): A finite region of a material that is smaller than an RVE. SVEs should be large enough so that an ensemble of them contains at least as much information as a single RVE. Small SVEs necessitate the use of a large ensemble for accurate estimation of effective properties. When analyzing SVEs instead of RVEs, the ergodic hypothesis is invoked.

1 As our focus is on computational studies, the term microstructure actually refers to the image of a microstructure.
Texture: A realization of a stationary random field (in computer graphics community). In materials science, the crystallographic orientation map in a polycrystalline structure is also referred to as a texture. Herein, we use the former description.

3. MCR methods

To achieve statistical equivalency, the reconstruction algorithm should be *compatible* with the characterization method. This way, the reconstructed microstructures will possess the statistical features obtained from an original microstructure sample (e.g., by image analysis) or defined by the user (e.g., for design purposes, see also Section 5.1). Following this compatibility requirement, we have categorized several MCR methods based on the *characterization* scheme and review them, along with the appropriate reconstruction methods, below.

The depth of details on each method reflects the proportion of papers covering them. For example, while there are a large number of papers on the use of statistical functions for MCR, there are only a few recent works investigating the applications of supervised/unsupervised learning in MCR.

Hereafter, we primarily focus on two-phase microstructures and always assign the subscript/superscript 1 to the primary phase, i.e., the phase which must be characterized (e.g., the voids in a porous material or the fibers in a fibrous composite). The discussions can be extended to multi-phase materials in a straightforward manner. We also note that experimental imaging techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) often result in grayscale images but herein it is assumed that the images are appropriately denoised (e.g., with a Gaussian filter) and thresholded (e.g., via either matching the volume fraction [83] or Otsu’s method [84]). Fig. 3 illustrates how MCR is generally used in computational materials science: Once the available microstructure sample is prepared, it is characterized to represent its morphology (a very high dimensional space) quantitatively. This characterized information is then fed into the reconstruction algorithm to build an ensemble of samples with as many statistically equivalent microstructures as required. Afterwards, the properties of the ensemble members are predicted via computer simulations to quantify their variability. If a finite set of parameters are identified during characterization and property evaluation steps (denoted by, respectively, \(a\) and \(b\) in Fig. 3), by changing the characterization parameters (i.e. \(a\)) in a feasible space and repeating the above process, a training dataset can be created to relate the microstructure (through \(a\)) to the properties, \(b\), via machine learning.

3.1. Statistical functions

In this section, we start by describing the functions commonly used for statistical characterization of random heterogeneous materials, and then introduce the well-known Yeong and Torquato (aka YT) method for microstructure reconstruction.

3.1.1. Characterization

A microstructure image may be quantitatively characterized via some statistical functions which essentially capture the degree of spatial correlation among different locations in a probabilistic sense. As shown in [85–90] and discussed below, most microstructures cannot be sufficiently and uniquely characterized with only a single statistical function as these functions quantify spatial correlations of different natures. Some of the most widely used functions in the literature are reviewed below. The interested reader may consult [7,9,70,91–93] for other functions and more detailed discussions.

![Fig. 3. MCR in computational materials science: (a) The material system of interest is determined by the given sample. If the original image is grayscale, it needs to be processed (e.g., denoised and binarized) first. (b) The binarized image is characterized using one of the methods described in Sections 3.1–3.4 (here, the two-point correlation function is used). (c) A (set of) statistically equivalent microstructure(s) is reconstructed. The choice of the method depends on (and must be compatible with) the characterization scheme. (d) The properties of the reconstructed sample(s) are calculated via, e.g., FEA. Here, the changes in the \(\tan\delta\) curves of different microstructures are due to dispersion status. If the characterized features as well as the properties are parametrized (here, with \(a\) and \(b\)), structure-property links can be established by reconstructing an ensemble of samples, evaluating their properties, and subsequently using machine learning techniques.](image-url)
3.1.1.1. Two-point correlation function. Let \(X \) denote the microstructure image on a square lattice. The collection of pixels (voxels in 3D) of \(X \) are indexed and their brightness represents different material phases. For instance, a two-phase material (see Fig. 4a) may be represented with a binary (here, blue and white) image. An image might also be represented on a triangular lattice, especially to better characterize highly anisotropic structures with long range correlations [37]. As this is rarely the case, herein we only focus on microstructure images on a square lattice:

\[
X_{uv} = \begin{cases}
1 & \text{if } u\nu \in \text{phase 1} \\
0 & \text{otherwise}
\end{cases},
\]

(3-1)

where \(u\nu \) is the pixel index and determines its location within the image. Denoting this location by the vector \(r \), the two-point (auto)correlation function [55,56,94] for phase \(i \) is defined as:

\[
S_i^2(r_1, r_2) = \langle X_{r_1} X_{r_2} \rangle,
\]

(3-2)

where \(\langle \cdot \rangle \) denotes the expectation operator. In simple words, this function provides information on pair distributions regarding phase \(i \) within the microstructure image. This definition can be generalized to higher order functions such as three and four-point correlation functions (denoted by \(S_i^3(r_1, r_2, r_3) \) and \(S_i^4(r_1, r_2, r_3, r_4) \), respectively).

If \(X \) is statistically stationary and isotropic, \(S_2 \) will only depend on the distance between the two points: \(S_2^2(r_1, r_2) = S_2^2(|\Delta r_{12}|) = S_2^2(r) \). Hence, for a stationary and isotropic material, \(S_2 \) has a simplified formulation and can be efficiently calculated (e.g., via FFT [95–97], Monte Carlo [90], orthogonal sampling [39,63], or lattice-point algorithm [42]). \(S_2(r) \) is perhaps the most widely used and well-known statistical function and can be thought of as the probability of tossing a line of length \(r \) on a microstructure image and having both its ends land on phase \(i \). \(S_2^2(r) \) belongs to the family of \(n \)-point correlation functions which have been widely used in cosmology to investigate dark matter halo [98,99] as well as materials science to predict the bounds on effective (i.e., macroscopic) properties such as electrical permittivity [56,58,100] and bulk modulus [57,101]. Another attractive feature of \(S_2(r) \) is that many experimental characterization techniques including small angle X-ray scattering [53], time dynamics of energy transfer [102], and distant dipolar field nuclear magnetic resonance [103] can provide structural information in the form of \(S_2(r) \). For a stationary material consisting of two phases with volume fractions \(\langle V_j \rangle \) of \(\phi_1 \) and \(\phi_2 \), \(S_2^2(r) \) of a digitized microstructure (i.e., an image) must have the following properties [9,40,41,104,105]:

- Upper and lower bounds: \(0 \leq S_2^2(r) \leq \phi_1 \)
- Non-negative Fourier transform
- Equality to \(\phi_1 \) and proportionality to specific surface \((s_i) \) at \(r = 0 \): \(S_2^2(0) = \phi_1 \) and \(\frac{dS_2^2(r)}{dr} \bigg|_{r=0} = \frac{\phi_1}{2D} \), where \(D \in \{1, 2, 3\} \) is the dimensionality of the image
- Asymptotic value (for a large enough image of size \(l \) and in the absence of long range correlations): \(\lim_{r \to \infty} S_2^2(r) \to \phi_1^2 \)
- Satisfying the triangular inequality: \(S_2^2(r) \geq S_2^2(2z) + S_2^2(t) - \phi_1, \ r = t - z \)

As mentioned above, \(S_2^2(r) \) quantifies the microstructure in a probabilistic sense and so cannot be readily used to build sensible structure-property maps. To provide a physical understanding of the quantified information and enable the identification of microstructures that have two-point correlation functions with similar features (e.g., the existence of fluctuations), parametric basis functions have been used. Sample functions include monotonically decreasing functions (applied especially to porous materials having voids of random shape and size) [42,54,55], damped oscillating functions.
[30,39,42,106,107], and functions with known structures corresponding to certain material systems, such as randomly packed overlapping spheres [9,42,99,106]. Although it is commonly believed that there are many different microstructures compatible with a given \(S_2(r) \) [39,108], Rozman et al. [40] argue that periodic microstructures with smooth boundaries are completely specified by their two-point correlation functions. In their language, “smooth” refers to the condition where the length scales of \(S_2(r) \) have both an upper bound and a lower bound determined by, respectively, the periodicity and the shortest wavelength present in the structure. Unfortunately, most materials do not satisfy these conditions and hence \(S_2(r) \) cannot uniquely characterize them (e.g., it does not include information about percolating clusters within the system [85]).

Higher order correlation functions (e.g., \(S_1(r) \) and \(S_4(r) \)) can also be used for characterization but their computation is more demanding and it is illustrated in [85,88] that more efficient functions exist (see below).

3.1.1.2. Lineal-path function. As discussed above, \(S_2(r) \) cannot uniquely characterize the majority of material systems and therefore additional statistical functions are required for effective characterization. The lineal-path function [86], \(L(r) \), is one such function that quantifies the amount of clusteredness along straight lines within a microstructure (see Fig. 4). \(L(r) \) is a two-point quantity and from a probabilistic point of view, gives the probability of throwing a line on the microstructure image and having the entire line land on phase \(i \). It can be calculated either with a Monte Carlo approach [90] or by building the histogram of chords [89].

Similar to \(S_2(r) \), analytical expressions for \(L(r) \) have also been derived for certain material systems such as 1D digitized medium of periodic/random rods [39], overlapping equally-sized particles [109], and equilibrium hard disks [39]. Unlike \(S_2(r) \), the lineal-path functions of different phases within a single microstructure are not linearly dependent [39]. In other words, they are phase-distinguishing and can all be used in characterization (e.g., for an isotropic binary microstructure \(S_2^i = S_2^j + \phi_i^2 - \phi_j^2 \) where \(\phi_i \) is the volume fraction of phase \(i \)).

The lineal-path function may be related to other statistical functions as well. It is a rigorous lower bound on the two-point cluster correlation function [109], which is not available analytically for overlapping particle models for spatial dimension \(D \geq 2 \). In addition, the chord-length distribution function [9,86,109] can be evaluated by taking the second derivative of \(L(r) \). \(L(r) \) generally underestimates the clusteredness since the connectivity is only measured along straight lines (see Fig. 4c where \(L(r) \) is below \(C_2(r) \)). In other words, this measure would render two connected sites within a microstructure disconnected if the connectivity is not along a straight line. In addition, it is generally calculated along certain directions (e.g., horizontal, vertical, and diagonal) within the microstructure rather than along all the possible directions (see the recent work of Turner et al. [110] for a computationally efficient method known as scan line method [111,112] to simultaneously calculate \(L(r) \) along various directions). Amid these points, multiple studies [36,39,63,89] have shown that \(L(r) \) is useful for the characterization of clusters in a microstructure.

3.1.1.3. Two-point cluster correlation function. The two-point cluster correlation function [9,85,88], \(C_2(r) \), embodies important topological connectivity statistics and is perhaps the most informative “two-point” statistical function. \(C_2(r) \) quantifies the probability of finding two sites within phase \(i \) that are at distance \(r \) and in the same cluster. Although it is intrinsically a 3D descriptor, \(C_2(r) \) has been widely used to characterize 2D images as well. Given the digitized image of an arbitrary microstructure, \(C_2(r) \) can be calculated with either Monte Carlo [113] or building the histogram (i.e., binning) of the pair-distances for all the clusters (normalized by the total number of pair-distances).

Decomposition of the two-point correlation function discussed above gives some insight as to why \(C_2(r) \) is more informative than other two-point (and possibly higher order) statistical functions. Noting that in calculating the probabilities of \(S_2(r) \), the points which are in different clusters are not distinguished, the decomposition for a binary image reads [88]:

\[
S_2(r) = C_2(r) + D_2(r),
\]

where \(D_2(r) \) measures the probability of tossing a line on the microstructure and having its ends land on different phases. As Eq. (3-3) shows, unlike \(S_2(r) \), \(C_2(r) \) is sensitive to clustering and percolation and in fact its volume integral diverges at the percolation threshold [9,85]. As schematically illustrated in Fig. 5, \(C_2(r) \) is more informative than \(S_2(r) \) for microstructures characterization.

3.1.2. Reconstruction

Having chosen statistical functions for characterization, reconstructing a statistically equivalent digitized microstructure can be cast as an optimization problem by adjusting an initial digitized image \(Y \) (with the same \(V_f \) for each phase as the reference image) to minimize some cost (aka energy) function, hereafter denoted by \(E \). The adjustment is done by swapping the pixels (voxel in 3D) of \(Y \) to minimize \(E \), which measures the differences between the statistical function(s) of the original image \(X \) and those of \(Y \). As noted in Section 3.1.1, one specific function cannot solely characterize most microstructures so usually multiple functions are incorporated into \(E \) as:

\[
E = \sum_{j=1}^{m} \sum_{i=d}^{l} 2z_j[f_j(r) - f_j(r)]^2
\]

(3-4)
where \(m \) is the total number of the functions considered (e.g., \(m = 2 \) if \(f_1(r) = S_2(r) \) and \(f_2 = L(r) \)), \(\alpha_i \)'s are the weights that quantify the importance of each function, \(l \) is the maximum spatial distance at which the functions are compared at, and \(\hat{f}_j(r) \) are the target functions (e.g., those of \(X \)). We will elaborate on the choice of the functions in Eq. (3-4) below but note that they generally depend on the available computational resources and tools as well as the material system of interest (e.g., because percolation is important in porous materials, appropriate functions must be used to characterize the clusteredness).

3.1.2.1. The Yeong and Torquato (YT) reconstruction method.

The profile of the energy function in Eq. (3-4) has multiple local optima \([39,63,106,114]\) and therefore a heuristic method such as simulated annealing (SA) \([39,63,88,115]\) or genetic algorithm \([116–118]\) is required to escape them while swapping the pixels. Hazlett \([61]\) used SA to reconstruct a 3D image of Berea sandstone by incorporating the variogram (the counterpart of \(S_2(r) \)) into \(E \). Similarly, Rintoul and Torquato \([62]\) used SA and the radial distribution function (as opposed to the variogram) to reconstruct structure of dispersions. Yeong and Torquato \([39,63]\) generalized this approach to the stochastic reconstruction (aka YT) method in the late 1990s for reconstruction of general random media. Over the past two decades, the YT method has been significantly improved and successfully applied to MCR of various materials including particulate structures \([62,116,117,119,120]\), chalk \([112]\), porous media such as soil \([121]\) and sandstone \([37,38,114,122,123]\), materials with labyrinth patterns \([124]\), and filamentary \([125]\) or multiconnected \([126]\) structures. In its most basic form, the procedures of the YT method are as follows (see Fig. 6):

- An initial image \(Y \) with the same \(V_f \) as the target image \(X \) is randomly generated and its statistical functions \((f_j(r)'s) \) are compared to those of \(X \) \((\hat{f}_j(r)'s) \) to calculate \(E \).
- Two pixels of \(Y \) with different phases are swapped, and \(f_j(r)'s \) are updated to obtain \(E' \). If \(E' < E \), i.e. if the discrepancy between the statistical functions of \(Y \) and \(X \) decreases, the swap is accepted. Otherwise, some adaptive probabilistic rule (which, e.g., can be controlled by the cooling schedule in simulated annealing) is used to determine the acceptance or rejection of the swap. The updated image would then serve as the initial image for the next iteration and this process is continued until \(E < \varepsilon \), where \(\varepsilon \) is the tolerance (a small number).

The YT method has also been used for reconstructing 3D samples given one or multiple 2D images \([37,38,116,125,127–131]\) where it is assumed that the statistical functions of the original 3D image are the same as those of the given 2D sample (s), see Fig. 7.
3.1.2. Improvements of the YT method. The YT method is computationally expensive (especially if the microstructure image is anisotropic, multiphase, or has a large number of pixels) and so significant research is conducted to increase the speed as well as the accuracy (i.e., statistical equivalency) by investigating (i) what statistical functions to use in E as the reconstruction process progresses, (ii) how to efficiently update the $f_i(r)$’s after each swap, (iii) how to determine the acceptance or rejection of a swap, (iv) how to initialize Y, and (v) how image analysis techniques may be incorporated into the above procedure. In what follows, we discuss these points one by one.

3.1.2.1. Choice of statistical functions and their updating procedure. Rozman et al. [40] argue that for certain structures (see Section 3.1.1.1), evaluating E solely via $S_2(r)$ would result in accurate enough reconstructions (see Fig. 8). This scheme has been used, with acceptable accuracy, in the past for MCR of soil pore space [121], checkerboard pattern and core-shell structure [106,132], overlapping disks [106], and sandstone [38]. However, as described in Section 3.1.1, for complex media that exhibit both short and long range spatial correlations (such as porous media) and filamentary or multiconnected structures, multiple functions must be incorporated into E to ensure statistical equivalency. Prior work [63,89,114,119,123] has demonstrated that the use of $L(r)$ (of either the primary phase or the secondary phase or both) in addition to $S_2(r)$ increases the accuracy by preserving the clustering statistics of X in Y. In these works, as noted in Section 3.1.1, $L(r)$ is only calculated in certain directions rather than all possible directions due to computational costs.

Use of other functions such as surface-surface correlation and chord-length distribution [88] has also been shown to improve the accuracy (although the latter function can be directly derived from $L(r)$ and Pant et al. [89] recommend the use of $L(r)$ as its profile is smoother). The extensive study of Jiao et al. [88] and the reviews in [36,133,134] provide strong arguments that incorporation of the two-point cluster correlation function into E (besides $S_2(r)$) would best preserve the statistical equivalency between X and Y (see Fig. 9). For this reason, it is a common practice to treat $C_2(r)$ as a test measure, i.e., putting a combination of various functions such as $S_2(r)$ and $L(r)$ into E in MCR and subsequently evaluating the performance by comparing the two-point cluster correlation functions of X and Y.

Computational expenses are the primary reasons that one tries to minimize the number of statistical functions in E while ensuring the statistical equivalency: the cost of evaluating such functions at each optimization iteration (i.e., updating E after a pixel/voxel swap) is not negligible, especially because the number of iterations is often in the order of thousands, if not millions. This is particularly true for anisotropic or multi-phase microstructures. To address this issue, it has been noticed that:

![Fig. 7. 3D reconstruction from 2D images: (a) The sample 2D image of a Fontainebleau sandstone, (b) pore space image and (c) perspective image of the reconstructed 3D microstructure. The reconstruction is achieved by incorporating both $S_2(r)$ and $L(r)$ into the cost function. Images are reproduced with kind permission from [63].](image1)

![Fig. 8. Reconstruction of random media with $S_2(r)$: A two-phase checkerboard and a three-phase core-shell structures are successfully reconstructed via $S_2(r)$. Images are reproduced with kind permission from [132].](image2)
In the early stages of the optimization, most of the swaps are successful \[37,38,89\] and so one can start the heuristic optimization and achieve quick convergence by evaluating \(E \) only via \(S_2(r) \) and incorporate other functions in the later stages of optimization.

For certain materials (e.g., isotropic), the functions may be evaluated in only a few directions (e.g., horizontal and vertical) rather than all possible directions. Caution must be exercised because such implementations might introduce unwanted anisotropy \[106\] if there are considerable short range correlations in the structure.

To update the \(f_j(r) \)'s of \(Y \), one does not need to calculate them anew as the swaps only slightly perturb \(f_j(r) \)'s (see e.g. \[37,89\]).

The accumulative cost of generating random numbers for each optimization iteration of the SA algorithm is not negligible. This cost could be reduced by generating a large array of random numbers prior to optimization \[37\].

Biased adjustment at the later stages of optimization (i.e., when the convergence rate with pure random selection is slow) increases the convergence speed while reducing the noise (i.e., isolated black or white pixels). Rather than swapping the phases of two randomly chosen pixels, Rozman \[132\] illustrated that exclusive selection of interfacial pixels (with at least one neighboring pixel of different phase) substantially increases the convergence rate. Zhao et al. \[123\] proposed a similar method and required the selected pixels to have a user-defined connectivity measure. Along the same line, Jiao et al. \[37\] introduced the surface optimization algorithm where the pixels of the primary phase are grouped into two sets of high and low energy and the random swaps are restricted to the former set (the high energy pixels are those that are not connected to any pixel with the same phase). Finally, Tang et al. \[38\] introduced the different-phase-neighbor (DPN) pixel selection rule and illustrated its superior performance. In the DPN method, the selection probability of any pixel is proportional to the number of neighboring pixels with a different phase (see Fig. 10). As pointed out by Jiao et al. \[37\], the idea of restricting the pixel selections to the interfacial pixels at the later stages of optimization is similar to the solidification process: when a large enough cluster is formed, it attracts the free particles to its surface in order to reduce the free energy of the system. See \[38,89\] for comparative studies on the effect of pixel selection rule on convergence rate.

3.1.2.2. Optimization procedure via simulated annealing

As mentioned, the existence of multiple local optima in the profile of \(E \) necessitates the use of a heuristic optimization algorithm. Simulated annealing and its variants have been widely used for this purpose. SA was first introduced by Kirkpatrick et al. \[135\] who applied it to VLSI layout and graph partitioning. Global minimization of \(E \) via SA is based on the physical annealing process: If a system is heated up to a high temperature and then slowly cooled down to zero Kelvin, the ground state of the system will be achieved. Within the context of our reconstruction problem, the initial image (\(Y \)) and the original microstructure (\(X \)) are, respectively, the system at high temperature and zero Kelvin, while the pixel swaps resemble the system stabilization at each annealing step. Because annealing steps must reduce the energy of the system over time, not every pixel swap is acceptable. Variants of the SA algorithm essentially differ on what makes a pixel swap acceptable.

Assuming \(k - 1 \) iterations are done, the SA algorithm used by Yeong and Torquato \[39,63\] and many others \[10,38,42,8,106,114,119,121,125,126,129,130,136,137\] assigns the probability \(P \) to a pixel swap at iteration \(k \) based on the Metropolis rule:

\[
P = \begin{cases}
1 & E' \leq E \\
\exp \left(-\frac{E' - E}{T(k)} \right) & E' > E.
\end{cases}
\]

(3-5)

where \(T(k) \) is the so-called temperature at the current iteration and its functional form determines the cooling schedule. Eq. (3-5) has close connections with the Boltzmann distribution: The probability of having a material system at a particular state with temperature \(T \) and energy \(E \) is given by \(P \sim \exp \left(-\frac{E}{T} \right) \). Once \(P \) is calculated, the swap will be accepted/rejected by drawing a Bernoulli random variable with event probability \(P \). An inverse logarithmic schedule \(T(k) \sim 1/\ln(k) \) would in principle drive the system to its ground state \[39\]. Such a schedule is too slow for practical applications and so alternative formulations such as \(T(k) = T_0 \lambda^k \) (where \(T_0 \) is the initial temperature and \(\lambda \) is a constant less than unity) are oftentimes practiced.

Fig. 9. Reconstruction of the two-phase microstructure of a concrete sample via correlation functions: (a) The original microstructure, (b) reconstruction via \(S_2(r) \) alone, (c) reconstruction via \(S_2(r) \) and \(C(r) \). Images are reproduced with kind permission from \[88\].
Dueck et al. [138] developed a variant of SA known as threshold acceptance (TA) and illustrated its computational superiority. The advantages of using TA over the original SA algorithm for microstructure reconstruction was first suggested by Cule and Torquato [106] and later investigated by Pantil et al. [89] (see Fig. 10). The main difference between SA and TA is that while in SA the acceptance of a bad swap is decided based on some probability measure, in TA it is done based on a threshold value. Specifically, a bad swap at iteration \(k \) is accepted if \(E - E_k \leq E^\text{th} \) where \(E^\text{th} \) is the threshold energy and is calculated as \(E^\text{th} = E_0 \gamma \). \(E_0 \) and \(\gamma \) are, respectively, the initial energy and a constant less than unity.

The simpler version of TA known as the Great Deluge (GD) algorithm [139] has also been applied to the problem of reconstruction [106, 123, 132]. In the GD algorithm, \(E^\text{th} \) is set to 0. This choice of \(E^\text{th} \) leads to a rapid reduction in the energy of the system but convergence may not be achieved because the acceptance rate becomes impractically low at the final stages of the optimization. To address this issue, Rozman et al. [132] suggest to allow a bad swap (i.e., one that would increase the energy) after a large number of rejections.

In both the SA and TA algorithms, the optimization parameters such as \(T_0 \) or \(E_0 \), \(\gamma \), maximum number of iterations, and number of swaps in each iteration (like the annealing process, in both SA and TA, each iteration consists of multiple swaps to allow for the stabilization of the system) need to be carefully tuned. For this reason, the GD algorithm might appear more appealing as it only has one adjustable input. However, further research must be conducted to investigate the efficiency of GD for complex energy profiles (e.g., when multiple correlation functions are incorporated in \(E \)).

Further improvements. A few works [136, 140, 141] have demonstrated that efficient initialization (e.g., via random fields, see also Section 3.3.2.1) of \(Y \) can decrease the computational costs of the YT method. To decrease the computational costs of the YT method, the use of mathematical morphology has also been practiced. Zachary et al. [126] and later Gau et al. [125] used the dilation and erosion (see Appendix A.1) technique to enable effective MCR of, respectively, doubly connected donut-like and filamentary media solely via the dilation (and hence more connected) primary phase and then erosion is applied to the reconstructed image to adjust both the \(V_j \) and the connectedness. In this approach, the shape and size of the dilation/erosion element must be chosen by the user and one has to make sure that the characteristic features of the original image are not lost through dilation. In other attempts, the hierarchical annealing [142] and the closely related stable phase [130] methods are developed where the reconstruction process is conducted in multiple resolutions to speed up the YT method (see Section 3.5.1 and Appendix A.2). Here, the basic idea is much like that in the Gaussian and Laplacian pyramids [143, 144] which are used to compress digital images through a multi-resolution decomposition procedure (see Appendix A.2).

3.2. Physical descriptors

Similar to the previous section, we begin this section by elaborating on what physical descriptors are and how they can be used for microstructure characterization in different material systems (Section 3.2.1). As the main advantage of such descriptors lies in building PSP links, we provide some examples on this line of work in Section 3.2.1.1. We then describe the reconstruction techniques (Section 3.2.2) and conclude the section with some notes on how to statistically choose the best (sub) set of descriptors for MCR (Section 3.2.3).

3.2.1. Characterization

Characterization of finite size objects with physically meaningful descriptors in one-, two-, three-, and higher-dimensional spaces has drawn notable attention in many disciplines including spatial statistics [145], materials science [30, 35, 93, 146–148], forestry [149], and biology [150]. In the realm of materials science, enabling direct elucidation of processing-structure and structure-property relations in crystalline structures and composites (see Fig. 11) is perhaps the most advantageous feature of this characterization method. The study of physical descriptors is particularly motivated by...
(i) the existence of a large number of descriptors and the strong correlation among them [151], and (ii) the fact that the choice of descriptors for efficient characterization depends on the material system as well as, for building structure-property links, on the properties of interest.

Physical descriptors may be classified as either deterministic such as V_f or statistical like nearest-neighbor distances or area/volume of the Voronoi cells. In the former case, a single value is sufficient to characterize the descriptor and will be assigned to the entire microstructure image (e.g., a binary microstructure with inclusion V_f of 40%). In the latter case, however, a cumulative distribution function is required for descriptor characterization (e.g., the set of inclusions’ diameter or nearest neighbor in a fibrous composite will follow a particular distribution. See, e.g., [35]). Table 1 lists some descriptors that have been successfully used for building structure-property links in composite materials. Descriptors can also be categorized based on the information scale that they characterize [30,83]: for composites, at the highest scale is the V_f of the individual constituents, followed by, respectively, the descriptors describing the dispersion status and the geometry of the inclusions (in other words, a high-scale descriptor is assigned to the entire microstructure while a low-scale descriptor to the individual features). In alloys, on the other hand, the descriptors characterizing the alloy texture are at the highest scale and are followed by those characterizing the individual grains. It should be noted that the above classifications depend, to some extent, on the material system as well as on the reconstruction procedure (see the example in Section 5.1). For example, in a polymer nanocomposite with equally-sized non-overlapping circular inclusions, both the V_f and the number of clusters (or equivalently the number of inclusions) may be categorized as deterministic descriptors at the highest length-scale. If the inclusions are of different size and allowed to overlap, however, the number of clusters will describe the dispersion status and the number of particles will be a statistical descriptor. For more discussions on this, see [30,151,152].

(i) the existence of a large number of descriptors and the strong correlation among them [151], and (ii) the fact that the choice of descriptors for efficient characterization depends on the material system as well as, for building structure-property links, on the properties of interest.

Physical descriptors may be classified as either deterministic such as V_f or statistical like nearest-neighbor distances or area/volume of the Voronoi cells. In the former case, a single value is sufficient to characterize the descriptor and will be assigned to the entire microstructure image (e.g., a binary microstructure with inclusion V_f of 40%). In the latter case, however, a cumulative distribution function is required for descriptor characterization (e.g., the set of inclusions’ diameter or nearest neighbor in a fibrous composite will follow a particular distribution. See, e.g., [35]). Table 1 lists some descriptors that have been successfully used for building structure-property links in composite materials. Descriptors can also be categorized based on the information scale that they characterize [30,83]: for composites, at the highest scale is the V_f of the individual constituents, followed by, respectively, the descriptors describing the dispersion status and the geometry of the inclusions (in other words, a high-scale descriptor is assigned to the entire microstructure while a low-scale descriptor to the individual features). In alloys, on the other hand, the descriptors characterizing the alloy texture are at the highest scale and are followed by those characterizing the individual grains. It should be noted that the above classifications depend, to some extent, on the material system as well as on the reconstruction procedure (see the example in Section 5.1). For example, in a polymer nanocomposite with equally-sized non-overlapping circular inclusions, both the V_f and the number of clusters (or equivalently the number of inclusions) may be categorized as deterministic descriptors at the highest length-scale. If the inclusions are of different size and allowed to overlap, however, the number of clusters will describe the dispersion status and the number of particles will be a statistical descriptor. For more discussions on this, see [30,151,152].

Table 1

Characterization with physical descriptors: List of physical descriptors commonly used for characterizing the primary phase in microstructures consisting of a matrix and overlapping inclusions with random size and orientation. While some of the descriptors are deterministic (i.e., a unique number can be assigned to the entire microstructure or all the inclusions), others are statistical and therefore identified via a distribution. It must be highlighted that the descriptor type, to some extent, depends on the material system of interest. See the text for more details.

<table>
<thead>
<tr>
<th>Descriptor symbol</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale I: Composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_f</td>
<td>Volume fraction</td>
<td>Deterministic</td>
</tr>
<tr>
<td>Scale II: Dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_{ncd}</td>
<td>Cluster’s nearest center distance</td>
<td>Statistical</td>
</tr>
<tr>
<td>θ</td>
<td>Orientation angle of a cluster’s principle axis [153]</td>
<td>Statistical</td>
</tr>
<tr>
<td>I_{fill}</td>
<td>Total surface area</td>
<td>Deterministic</td>
</tr>
<tr>
<td>N_c</td>
<td>Number of clusters</td>
<td>Deterministic</td>
</tr>
<tr>
<td>Scale III: Geometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_p</td>
<td>Pore sizes (inscribed circle’s radius) [154]</td>
<td>Statistical</td>
</tr>
<tr>
<td>A</td>
<td>Area of individual particles</td>
<td>Statistical</td>
</tr>
<tr>
<td>r_c</td>
<td>Equivalent radius, $r_c = \sqrt{A/\pi}$</td>
<td>Statistical</td>
</tr>
<tr>
<td>δ_{comp}</td>
<td>Compactness [151]</td>
<td>Statistical</td>
</tr>
<tr>
<td>δ_{nd}</td>
<td>Roundness [155]</td>
<td>Statistical</td>
</tr>
<tr>
<td>δ_{ec}</td>
<td>Eccentricity [155]</td>
<td>Statistical</td>
</tr>
<tr>
<td>δ_{asp}</td>
<td>Aspect ratio [156,157]</td>
<td>Statistical</td>
</tr>
<tr>
<td>δ_{rec}</td>
<td>Rectangularity [155]</td>
<td>Statistical</td>
</tr>
<tr>
<td>δ_{tor}</td>
<td>Tortuosity [155]</td>
<td>Statistical</td>
</tr>
</tbody>
</table>
To characterize X (the digitized image of a microstructure) with physical descriptors, first various image segmentation techniques [158], such as edge or cluster detection, are applied to identify all the objects (i.e., lines, edges, clusters, etc.) with the primary phase. Then, the objects are analyzed to find the values and distributional characteristics (such as the mean and variance) of, respectively, deterministic and statistical descriptors. Unless the set of descriptors is chosen a priori (e.g., based on experience), these steps generally result in many descriptors, some of which might be strongly correlated or have negligible effect on either the material property or the quality of characterization. To address this issue, Xu et al. [151] developed a machine learning based approach where after identifying the descriptors of an ensemble of nanocomposite samples (prior to constructing structure-property relations), the number of descriptors is reduced by excluding both the correlated ones and those which affect the statistical functions (introduced in Section 3.1.1) the least. In Section 3.2.3, some dimension reduction techniques are introduced that can be used to identify the most effective descriptors for microstructure characterization.

In computational materials modeling [23,159] or design [30,83,137,151,152,160], rather than learning the descriptors from a microstructure image, one determines the values of a set of pre-selected descriptors (via, e.g., design of experiments [161–165]) and then proceeds to reconstruct the corresponding virtual microstructures and estimate their properties (via, e.g., FEA). In this application, it must be ensured that the set of descriptors (i) sufficiently characterizes the material system of interest to eliminate (or at least minimize) the sources of uncertainty in building structure-property relations (see Section 5.1 for an example), and (ii) all the points within the design hull (defined by the set of descriptors) correspond to realizable structures.

To enable the reconstruction of a 3D sample given 2D image(s) from it, stereological techniques can be used. Such techniques commonly make some assumptions on the 3D geometrical features and then estimate various attributes of 3D objects (such as number density, particle surface area, size, etc.) from those of the corresponding 2D objects [83,166]. For example, the ST method introduced in [166,167] can be used to construct 3D particle distributions from 2D micrographs with the assumption that the particles are spherical and have circular cross-section. For another example, the 3D aspect ratio in an isotropic material system with elliptical inclusions may be estimated from a 2D image by [83]:

$$\delta_{3D} = \frac{1}{\theta^*} \int_{0}^{\theta^*} f^{-1}(\delta_{2D})d\theta,$$

(3-6)

where f^{-1} is the inverse function for mapping 2D aspect ratio to 3D aspect ratio, and θ^* is the upper bound on the rotation angle given the thickness of the sample. θ^* is defined as:

$$\max \left\{ \frac{[x \cdot \cos \theta + y \cdot \sin \theta]^2}{f^{-1}(\delta_{2D})^2} + (-x \cdot \sin \theta + y \cdot \cos \theta)^2 = a_{2D}^2 \right\} = \tau,$$

(3-7)

where τ, the distance between inclusion centers and the nearest surface of the layer, follows the uniform distribution $\text{uni}(0,H)$. We note that, there are many inclusions that, after projection to 2D, will have the same aspect ratio (see Fig. 12b) and in Eq. (3-6) it is assumed that all such inclusions contribute equally to the integral (i.e., they are equally probable to be found in the sample). Assuming the minor radii are the same in 2D and 3D ($a_{2D} = a_{3D}$), f can be formulated as:

$$\delta_{2D} = f(\delta_{3D}) = \max \left\{ \frac{x \cdot \cos \theta + y \cdot \sin \theta}{a_{2D}}^2 + (-x \cdot \sin \theta + y \cdot \cos \theta)^2 = a_{2D}^2 \right\},$$

(3-8)

![Fig. 12. Effect of thin-layer observation on the 2D projection of a 3D inclusion: (a) The 3D ellipsoidal inclusion and its 2D projection, (b) possible 3D structures and the correspondent rotation angles for a single 2D projection, (c) upper bound on the rotation angle given the limited thickness, and (d) $x - y$ coordinate system for deducing the projection relation. Images are reproduced with kind permission from [83].](image-url)
3.2.1.1. Building structure-property maps via physical descriptors. As noted above, perhaps the primary advantage of characterization with physical descriptors lies in unraveling the direct effect of microstructure features on material property. In what follows, we summarize some of the findings to highlight the significance and potentials of this line of work.

The family of nearest-neighbor distances have been rigorously investigated as they play an important role in transport processes in particulate heterogeneous systems [9], microstructural evolution during recrystallization [168], particle coarsening [169], and liquid phase sintering [168]. Refs. [170–172] provide analytical expressions for relating the mean of nearest neighbor distances to the n-point correlation functions of the uniform random microstructures of impenetrable spherical particles. In [146] an expression for the mean values of first-, second-, and higher-order (up to sixth) nearest-neighbor distances for systems of equally-sized hard-core spheres in a $3D$ space is derived.

It is well accepted in the literature [29,30,83,151,152,173–177] that the degree of property enhancement of composites (with a metal or polymer matrix), in addition to the constituent material and interface properties, depends on morphological factors such as volume fraction, size, shape, and spatial distribution of the reinforcements. In metal-matrix composites, Brockenbrough et al. [178] illustrated that the effect of fiber distribution is significant at lower volume fractions and Christine et al. [179] concluded that clustering of the fibers significantly reduces the flow stress and strain hardening. The effect of various morphologies on the damage initiation and evolution process in ductile matrix composites has also been investigated via the Voronoi cell finite element [180,181]. These findings have been in line with the experimental studies of, e.g., Lewandowski and co-workers [182,183] and Mummery et al. [184].

Similar studies have been conducted on polymer composites [175]. For example, it is found that wide distribution of particle size increases the electrical conductivity of rubber composites with carbon black fillers because the probability of agglomeration increases and consequently the average gap width between conducting particles reduces.

In crystalline structures, perhaps the most critical features correspond to grains. The effect of shape, size, and crystallographic orientation of the grains on the properties has been extensively studied [185,186] and it is found, e.g., that intergranular corrosion is sensitive to grain boundaries [78]. In addition, grain size has an inverse relation with yield strength and toughness and thus its refinement is often used to improve mechanical properties.

3.2.2. Reconstruction

Once the set of physical descriptors is defined and their values/distributional characteristics are calculated (from an original microstructure sample) or prescribed (by the user), reconstruction of a microstructure sample can be achieved by adjusting an initial structure to match its descriptors to the target ones. The adjustment procedure is similar to that described in Section 3.1.2 in that it commonly involves optimization for matching some of the descriptors.

Xu. et al. [30] developed a hierarchical reconstruction methodology for reconstructing composites with overlapping elliptical inclusions of random size (see Fig. 13). Briefly, this method starts the reconstruction with the descriptors at the highest scale level. Depending on the identified descriptors in the characterization step, this may involve, e.g., determining the V_f and number of inclusions in a particulate structure. The method then proceeds to adjust the dispersion status of the inclusions that often requires a heuristic optimization algorithm such as SA, e.g., to match the nearest neighbor distances or Voronoi cell area/volume to the target values. Finally, local geometrical characteristics such as particle orientation and shape are assigned. Zhang et al. [152] integrated a decomposition and reassembly strategy into this method to enable effective reconstruction of composite microstructures with very low V_f and uneven distribution of cluster size. The hierarchical reconstruction method has been successfully used in materials design [29,30,83,151,152,160] and modeling [23] where the physical descriptors are used as input variables in, respectively, the optimization process and the learned constitutive law.
In crystalline structures, most approaches rely on ellipsoid packing and Voronoi tessellations to locate the grains in the reconstructed microstructure [186–190]. The crystallographic orientations are then assigned either randomly or following a certain distribution. As an example, the microstructure builder software package [78,187] has been developed to reconstruct 3D polycrystalline materials (see Fig. 14). It starts with an overpacked structure and swaps ellipsoids in and out with simulated annealing to achieve an optimal arrangement. Then, crystallographic orientations are assigned. The input is typically grain size and shape data and the output is a 3D voxel microstructure. This software has been greatly improved over the past few years and evolved to DREAM.3D [191].

Physics-based evolving algorithms such as Johnson–Mehl [192] and cellular algorithms [192,193] or the Voronoi polyhedral model [194] use a similar approach. In such methods, first a prescribed number of points representing the individual grains are positioned via, e.g., Poisson process and then grown to result into a crystalline microstructure (see Fig. 2 in [192]). The nucleation (i.e., the growth) is produced in the kinetic limit of simultaneous activation of the available nucleation sites and its rate is assumed to be isotropic and constant over all the sites. For a recent improvement on such algorithms see the work of Barbe et al. [195].

3.2.3. Dimension reduction

As discussed above, physical descriptors are well suited for building PSP relationships and materials design. In many cases, however, many descriptors may be identified in the characterization step when the “curse of dimensionality” (i.e., the large number of descriptors) would make reconstruction, PSP analyses, and materials design difficult. In this section, we elaborate on some dimensionality reduction approaches to determine the set of descriptors that best characterize a material system. Hereafter, we use the terms “feature” and “descriptor” interchangeably as the former term is more frequently used in the machine learning and statistics community where most dimensionality reduction techniques originate from.

3.2.3.1. Feature selection. In general, the objective of feature selection is threefold: improving predictive performance, providing more cost-effective predictors, and facilitating the discovery of underlying probabilistic principle of data generation [196].

Variable ranking is one of the most common techniques for feature selection where a scoring function is used to determine the score (i.e., significance) of each feature [196]. With higher scores indicating more important features, variable ranking enables the identification of the most informative features for building parsimonious predictive models. For example, Xu et al. [151] employed a two-step feature selection process using descriptor pairwise correlation analysis and RRelieFF variable ranking approach [197] to select the physical descriptors that best control the damping property of polymer composites. In another work, Hassinger et al. [198] used feature selection and identified the interfacial area as the most significant physical descriptor that can be correlated via two heuristic processing energy descriptors to establish a predictive processing-structure model for polymer extrusion.

Exploratory factor analysis [199,200] is another technique for identifying the important features by grouping the correlated descriptors together to build a set of latent common factors. Zhang et al. [152] employed factor analysis into a structural equation-modeling approach for the design of dielectric polymer composites.

In short, feature selection approaches are generally applied in MCR when the identified descriptors are too many to work with and/or believed to be highly correlated. With feature selection, redundant statistical features can be dropped before further analyses are conducted.

Fig. 14. Reconstruction with microstructure builder: Visualization of a synthetic polycrystalline microstructure with DREAM.3D. Image is reproduced with kind permission from [191].
3.3.3.2. Feature extraction. Different from feature selection, this set of approaches the feature space is transformed into a lower dimensional one where the physical interpretations are diminished. In this section, we survey two major categories of feature extraction methods, namely, linear and nonlinear embedding.

3.3.3.2.1. Linear embedding. Among the feature extraction approaches that have been applied in materials science, linear embedding is the simplest but most powerful technique. Principle Component Analysis (PCA) is perhaps the most famous linear dimensionality reduction method. In short, PCA consists of an orthogonal transformation that converts a set of possibly correlated variables into a set of linearly uncorrelated variables known as the principle components (see [201] for more details).

A model reduction procedure is established in [202] with PCA and Karhunen-Loeve expansion to convert the high-dimensional feature space of 3D microstructure images to lower-dimensional approximations. This low-dimensional representation is then demonstrated to be very effective when taken as the inputs in the authors’ multi-scale analysis framework of diffusion behavior. The application of such schema is limited to binary microstructures with simple spatial correlations. In another work, Choudhury et al. [203] quantify similarity/difference between microstructures in ternary eutectic alloys by first converting them to some spatial-correlation functions, and subsequently employing PCA to obtain an objective low-dimensional representation of those functions. These representations are then taken as the predictors for classifying different alloys in the later steps. To model the variability of workpiece properties in a deformation process, Wen et al. [204] study the microstructure variability by applying a two-level bi-orthogonal Karhunen-Loeve decomposition on the high-dimensional microstructure feature space. The set of heuristic features consists of the grain size and axis-angle in FCC nickel alloy and is shown to effectively capture the variability of the grains in the microstructures.

3.3.3.2.2. Nonlinear embedding. Two major sets of nonlinear embedding approaches have been investigated in the literature [205]. One set is the bottom-up approach where it is assumed that a nonlinear manifold (embedded in the original feature space) governs the data distribution. Here, one attempts to preserve the local geometry of data on the manifold, i.e., to ensure the nearby points in the original feature space would also be close in the lower-dimensional representations. Locally linear embedding [206], Laplacian eigenmaps [207], and Hessian eigenmaps [208] are examples of this set of nonlinear embedding approaches.

The second major set is the top-down approach where one attempts to preserve the geometric relations at all scales (i.e. nearby and distant points on the manifold map to, respectively, nearby and distant points in the lower-dimensional space). Examples of this set of approaches include Isomap and its variants [209,210]. The top-down approach is used in Li et al.’s work [205] for creating low-dimensional surrogates that characterize polycrystalline microstructures. In particular, the Isomap method is first used to reduce the dimensionality of the feature sets (grain size and its orientation distribution) into lower-dimensional surrogates ($M \rightarrow \hat{M}$) and then reconstruction is achieved by sampling from the surrogate space via an inverse mapping ($\hat{M} \rightarrow M$). While the $M \rightarrow \hat{M}$ process is straightforward and inexpensive, the inverse mappings $\hat{M} \rightarrow M$ requires expensive step-wised iterative calculations for each of the statistical moments.

While not preserving as many physical interpretations as feature selection methods do, feature extraction techniques are advantageous in lowering the dimensionality of the design space and are trained easier to achieve a higher predictive accuracy. Hence, it is generally suggested to apply these methods when a very accurate and robust prediction model is desirable. It should be noted that, the choice of feature extraction algorithms requires in-depth knowledge and investigation of the complexity of the material systems.

3.3. Spectral density function

The Fourier transform (FT) is ubiquitously used across broad and diverse areas of science and engineering including biomedical engineering [211], spectroscopy [212], numerical methods [213], radar [214], acoustics [215], image processing [216], structural analysis [217], and mechanics [218–220]. In essence, the FT decomposes a waveform (e.g., a 1D signal or a 2D image) into a sum of sinusoids of different frequencies [221]. In the realm of MCR, such a decomposition would represent the dominant microstructural features in the frequency space. Previous research suggests that the spectral density function (SDF) (defined in Section 3.3.1) is sufficient to characterize some complex heterogeneous microstructures and, given an SDF, the corresponding original sample can be reconstructed using, e.g., phase recovery techniques [97]. SDF generally takes a simple parametric form; enabling materials design by considerably reducing the microstructure design space (aka microstructure hull [7]). In addition to these capabilities, previous studies have shown that SDF is closely related to some microstructural properties, e.g., in optical applications where it has been used for design representation in the optimization of light trapping performance of solar cells [222]. Many researchers have demonstrated the use of SDF for characterizing quasi-random structures made by bottom-up manufacturing processes such as nanoparticle self-assembly and nano-wrinkling [223,224]. For instance, Yu and Zhang [32] recently developed an SDF-based concurrent design approach to bridge the gap between structure-property and process-structure links in light-trapping nanostructures made of thin-film solar cells. In this section, we first introduce microstructure characterization using SDF and then summarize two different reconstruction techniques, namely, random field (RF) and disk packing.

Although SDF is closely related to the two-point correlation function (in that it describes the structure correlations in a reciprocal frequency space rather than the real space), we devote an entire section to it because, as argued in Section 3.3.1,
SDF provides a more physically meaningful representation than $S_2(r)$ and the associated reconstruction techniques are largely different.

3.3.1. Characterization

To obtain the SDF of a microstructure, we start with its Fourier transform $F(k)$, which is a complex function of frequency:

$$F(k) = F\{X\} = A_k e^{i\phi_k},$$

where X represents the binary microstructure image, $F\{\cdot\}$ denotes the Fourier transform operator, k is a vector denoting the frequency, A_k and ϕ_k represent, respectively, the magnitude and phase angle of the FT, and $i = \sqrt{-1}$. A microstructure’s SDF, $\rho(k)$, is then defined as the squared magnitude of its FT:

$$\rho(k) = |F\{X\}|^2 = A_k^2.$$

For an isotropic microstructure, the vector k can be reduced to a scalar k through radial averaging to convert $\rho(k)$ to a one-dimensional function satisfying $\rho(k) = \rho(|k|) = k$.

The SDF essentially describes the distribution of the Fourier components over the frequency range where different frequencies correspond to real space features at different length scales. According to Winner-Khinchin theorem\cite{225}, the two-point correlation function is equivalent to the inverse FT of SDF:

$$S_2(r) = F^{-1}\{\rho(k)\},$$

Nevertheless, compared to $S_2(r)$, SDF provides a more convenient representation for designing microstructures. To illustrate this, we compare the SDF and $S_2(r)$ characterization of four quasi-random microstructures in Fig. 15. These structures mainly differ in feature scale and randomness degree and so it is highly desired for the characterization method to sensibly quantify such differences. The key points of the studies demonstrated in Fig. 15 are as follows:

- In microstructures with a single dominant feature scale (Fig. 15a and b), unlike $S_2(r)$, the SDF clearly demonstrates the increase (or decrease) in the feature scale and can be parameterized parsimoniously. In Fig. 15e and f, the SDFs can be simply approximated via step functions (the red-dashed curves, which can be fully characterized with only 2 parameters) while the corresponding $S_2(r)$ curves (Fig. 15i and j) require complex parameterization.

![Fig. 15. Comparison between SDF and $S_2(r)$ characterization of four quasi-random microstructures: The differences in the microstructures such as feature scale and degree of randomness are better represented via SDF rather than $S_2(r)$. The insets in a through d are the 2D SDFs of the microstructures and due to isotropy, these 2D SDFs reduce to the 1D SDFs in e through h. See the text for more details.](image-url)
• SDF significantly reduces design dimensionality and is very efficient in highlighting the effect of randomness degree in disordered media through widening the effective power spectrum range (see Fig. 15a–c and compare their corresponding SDF representations) while the same phenomenon is captured by difficult-to-characterize damped oscillations in $S_2(r)$ curves (see Fig. 15i–k).

• In microstructures with a spread feature scale (Fig. 15d), the SDF is more illustrative than $S_2(r)$ (compare Fig. 15h and l) and can be simply formulated as a Gaussian distribution function.

• The key characteristics in SDF have direct associations with material functionalities. For example, the step SDF in Fig. 15g and the spread SDF in Fig. 15h corresponds to morphologies which are appropriate for, respectively, light-trapping in solar cells and producing angularly independent white color coating.

In short, SDF provides a convenient and informative representation for a wide range of microstructures and enables more straightforward mathematical modeling as compared with $S_2(r)$. Identifying the appropriate parametric form of the SDF is achieved through both physical understanding of the material processing and image analysis of the physical samples. For example, a formulation of the SDF conforming to the Landau free-energy theory has been derived [226] to describe the quasi-random materials born through the spinodal-decomposition process:

$$\rho(k) = \frac{A}{(k^2 + k_0^2)(k^2 + 2k^2b^2 \cos(2t) + b^4)},$$

(3-12)

where A is a normalization factor ensuring the integral of SDF $\rho(k)$ over $(0, +\infty)$ equals 1, and (k_0, b, t) are the three governing parameters that serve as the microstructure design variables in, e.g., an optimization process for achieving desired property.

3.3.2. Reconstruction

In this section, we illustrate two efficient analytical reconstruction methods that use the SDF representation as input to reconstruct microstructures with different morphological characteristics; including channel-type and disk-type. For the channel-type microstructures, we adopt the level-cutting random field approach for reconstruction, while for the disk-type we employ a disk-packing algorithm. Both approaches are analytical and hence very efficient. Though demonstrated for 2D microstructures, the approaches can be easily extended to 3D reconstructions.

3.3.2.1. Level-cutting random field. Realizing the microstructure image as a multi-variate sample taken from an underlying random field (RF, e.g., Poisson [227,228] and, esp., Gaussian [60,136,140,141,229]), one can deduce that the reconstruction of statistically equivalent microstructures can be achieved by finding that RF. Once the RF is found, reconstructed microstructures are realized by simply taking realizations from it, and subsequently level-cutting them. To find the RF that shares the same characteristics (i.e., SDF) with the original microstructure sample, two types of simulations are developed in the literature: on-lattice (discontinuous) [59,60] and off-lattice (continuous) [136,229–231].

The on-lattice simulation of 3D Gaussian random field (GRF) using linear filtering [60] adapts well to the problems dealing with numerical partial differential equations [229]. However, this method requires solving a set of linear equations and the discontinuous description of the pore network is problematic for, e.g., molecular dynamics computation, simulation of Brownian motion, or excitation relaxation inside disordered porous medium [229]. For this reason, Cahn’s scheme [231] is widely used for efficiently generating continuous GRF and is discussed in detail below. Reconstruction using GRF is in general efficient and accurate for random porous media but the performance deteriorates for particulate structures. To address this issue, hybrid approaches are developed [140,141,227,228] where the results from GRF reconstruction are refined through an optimization post-process via SA (detailed in Section 3.1.2). In [227,228], the author proposed to use level-cut filtered Poisson fields based on Monte Carlo simulation to generate two-phase microstructures. It is shown that the widely used level-cut Gaussian fields are special cases of level-cut filtered Poisson fields [227]. The merit of using filtered Poisson field is that, unlike GRF, various geometries of inclusions such as high aspect ratio ellipses can be realized by adjusting the parameters of the distribution (although the adjustment is not done in a straightforward manner).

3.3.2.1.1. Cahn’s scheme. Cahn’s Scheme [226,230,231] is essentially an analytical approach for generating realizations (i.e., reconstructed microstructure samples) from a GRF that has the same SDF as the original microstructure. This is achieved through:

$$Y(r) = \left(\frac{2}{N}\right)^{1/2} \sum_{i=1}^{N} \cos(k_i \cdot r + \phi_i),$$

(3-13)

where ϕ_i and k_i are uniformly distributed on, respectively, $[0, 2\pi]$ and a unit circle. k_i is a random variable whose probability density function, $P(k)$, is determined by the SDF: $P(k) = \rho(k)k$ for a 2D GRF and $P(k) = \rho(k)k^2$ for a 3D GRF. After generating the GRF, a level cutting process is often implemented to obtain a binary structure (see Fig. 16a and b) by making the volume fraction equal to a desired value (e.g. 50%). As shown in Fig. 16c, $\rho(k)$ in this example resembles a ring shape in 2D or, once radially averaged, a Dirac delta function in 1D.

To explain why Cahn’s scheme works, we note that a standard GRF with zero mean is completely characterized by its two-point correlation function [69]. In addition, as defined in Eq. (3-11), $S_2(r)$ is the inverse Fourier transform of $\rho(k)$ and can be
represented by an n-dimensional Fourier integral. Using the Wiener-Khintchine theorem, this n-dimensional integral takes a simpler form and is replaced by a one-dimensional Hankel transform:

\[
S_2(r) = 2^{n/2} \Gamma(n/2) \int_0^\infty \frac{J_n(kr)}{(kr)^{n/2}} k^{n-1} \rho(k) dk,
\]

where \(J\) is the Bessel function of the first kind, \(n\) is the dimension of the GRF, and \(\rho(k)\) is the one-dimensional SDF of the GRF. For a 2D GRF, the above reduces to:

\[
S_2(r) = \int_0^\infty J_0(kr) \rho(k) dk = \int_0^\infty J_0(kr) P(k) dk.
\]

Essentially, the above formulas illustrate that \(S_2(r)\) and SDF can both be used for characterizing a GRF.

3.3.2.2. Disk-packing

Disk-type structures are another important class of microstructures that can be fabricated by bottom-up processes such as self-assembly of polymer nanospheres and cuttlefish ink nanoparticles [232]. Existing works have investigated the possibility of packing mono-sized disk-shape particles to achieve certain types of SDF by adjusting the center distances and number of disks. Most of these structures are loosely packed and possess a thin ring shape SDF [233]. Yu and Zhang recently established a semi-analytical relationship between the distribution of disk numbers and disk radius for targeted SDF profiles. The approach is based on a dense disk packing algorithm with a simple strategy: Two neighboring disks repel each other if they overlap and vice versa. See [32] for the algorithmic details.

The SDF of mono-size disk packing structures resembles a ring-shape in 2D (or, after radially averaging it, Dirac Delta function in 1D) with a simplified relationship between the peak frequency location \(k_{peak}\) of the SDF and disk radius \(r\) [32]:

\[
r \approx \frac{L}{1.69} k_{peak},
\]

where \(L\) is the side length of the structure. Complex SDF profiles can be achieved by packing disks with different sizes. Our empirical studies in [32] suggest that the intensity of SDF at a certain frequency \(k_i\) is proportional to the total area occupied by the corresponding disks of radius \(r_i\), with \(k_i\) and \(r_i\) satisfying the relationship in Eq. (3-16): \(\rho(k_i) \propto N_i r_i^2\), where \(N_i\) is the number of disks of radius \(r_i\). In addition, when the total areas of disks for each size are equal, the corresponding \(\rho(k_i)\) are approximately equal. Thus, one can estimate the distribution of disk sizes for arbitrary SDF. As an example, the following condition should hold to achieve a uniform SDF:

\[
N_1 r_1^2 = N_2 r_2^2 = \cdots = N_n r_n^2.
\]

Three examples are shown in Fig. 17 to illustrate the effectiveness and flexibility of this approach. Fig. 17b and c are microstructures with very similar underlying (radially averaged) SDF (Fig. 17a) that consists of two narrow bands. Although the particle geometries are distinct (circle vs. triangle), the underlying spatial correlation and feature scales are close, resulting in similar SDFs. The SDF in Fig. 17d follows a broad Gaussian distribution and the corresponding microstructure in Fig. 17e possesses multiple feature scales (as opposed to those in Fig. 17b and c with only two apparent feature scales).

3.4. Machine learning

Recently, some machine learning techniques have been successfully applied to MCR. The main motivation of these techniques lies in their speed and flexibility in that they are generally, as opposed to the reviewed techniques so far, applicable to a broader range of material systems. We have categorized such works into three groups and review them in the following sections.
3.4.1 Unsupervised deep learning

The emerging research area of deep learning has stimulated a plethora of applications across a variety of disciplines [234]. In general, deep learning models are hierarchies of stacked neural network layers that encode data into hyper-dimensional spaces through linear multiplications and non-linear transformations. While widely recognized nowadays, neural networks dropped to near pseudoscience status during the “AI winter” in the 1990s because training large-scale deep neural networks suffered from the so called vanishing gradient problem. The introduction of the layer-by-layer pre-training strategy via unsupervised learning by Hinton et al. [235] addressed this issue and revitalized the use of such models in the field of artificial intelligence (AI) [236,237].

While unsupervised deep learning is widely used in the computer science community, its application in materials science is still scarce. Recently, Cang et al. [238,239] employed the convolutional deep belief network (CDBN) [240] to hierarchically extract implicit features and realize reconstructions for multi-scale anisotropic alloy microstructure. Their model consists of three convolutional restricted Boltzmann machine (CRBM) layers, with a pooling layer between the second and the third CRBM layers for further dimensionality reduction (see Fig. 18). While this model preforms satisfactorily in extracting features from complex morphologies such as anisotropic alloy microstructures, it relies on a heuristic post-processing step, flow-based difference-of-Gaussian (fDoG) filtering, which is specifically designed for the alloy system studied. Additionally, unlike other deep learning models used in applications outside of MCR that are trained on millions of data, the model is trained on only a hundred microstructure images. Insufficient training data may lead to an over-fitted model that is only

![Fig. 17. Reconstruction of quasi-random nanostructures via the particle packing algorithm: The SDF (a) of the microstructures in (b) and (c) consists of two narrow bands that represent the two distinct feature scales, while the SDF (d) of microstructure in (e) has a Gaussian distribution. The insets in b, c, and e are the 2D SDFs of the corresponding microstructures and due to isotropy, these 2D SDFs reduce to the 1D SDFs in a and d.](image)

![Fig. 18. The network configuration of Cang et al. [241] CDBN model for MCR: The model has three layers with a pooling one for further dimensionality reduction.](image)
applicable to a specific material (sub)system (from which the data is collected) and difficult to be generalized. Since training deep learning models that generalize well requires a significantly large amount of data, this model is suggested to be applied when a cheap microstructure evolution simulation is available or a better strategy for parameter initialization is found. It should be also noted that the potential of such deep learning model in materials design has not been fully exploited. For example, the features extracted by CDBN or other unsupervised deep learning models have not been incorporated with processing conditions and materials properties to establish predictive models. More investigations on this direction are needed.

3.4.2. Instance-based learning

Different from the characterization approaches that aim to quantify microstructure using statistical models, there is another category of approaches that perform instance similarity search in databases of microstructures [242]. Briefly, the essence of such approaches lies in three major steps: (i) Creating a database that contains representative sample instances, (ii) Defining the feature space and similarity metrics applicable to all the samples in the database, and (iii) Conducting brute-force or algorithmic search to find the most similar instance in the database upon query. In general, there are two major challenges associated with these instance-based approaches: data sufficiency and search efficiency. As for data sufficiency, not only the database should be large enough, but also the feasible space must be well covered. To this end, a sophisticated data evolution approach is essential as experimental data in materials science is oftentimes limited quantitatively and qualitatively. With a data evolution process, the size of database increases exponentially and so it is essential to develop a rapid searching mechanism that can efficiently locate the most similar instance in the database upon a query.

Sundararaghavan et al. [15] addressed these two challenges by employing a Monte Carlo based microstructure evolution approach and hierarchical classification models to reconstruct a 3D sample given a 2D microstructure image. Specifically, a large database of 3D microstructure instances created computationally and experimentally is employed. Lower-level features of these instances, as illustrated in Fig. 19, are then extracted for similarity analysis to create a hierarchical support vector machine classification model. Once a 2D microstructure example is provided, the classification model performs a fast search through the instance database and finds the most likely equivalent 3D microstructure as the reconstructed microstructure. The retrieved 3D microstructures by this approach, are then validated by comparing their point-correlation functions to those of the original 2D image. While a good match between the statistical functions suggests the validity of this approach, the hierarchical classification model highly depends on the lower-level features (which are selected heuristically) and it is yet unknown how this approach would perform if alternative features are chosen.

![Fig. 19. Hierarchical microstructure classification: (a) Classification based on $S_2(r)$, and (b) classification based on $S_3(r)$. Image is reproduced with kind permission from [15].](image)
The reconstruction procedure in instance-based learning is essentially a sampling process where only the stored instances (i.e., microstructures) in the database can be realized. This sampling strategy limits the application of this approach to the cases where a huge database of microstructure samples with great coverage is available.

3.4.3. Supervised learning

Recently, Bostanabad et al. [90] developed a versatile approach for MCR based on supervised learning for general material systems. In this approach, characterization involves fitting an appropriate supervised learner to the original microstructure image, X, and reconstruction consists of taking realizations from that supervised learner; fitting the model is like coding while reconstruction is like decoding.

3.4.3.1. Characterization.

In short, the fundamental idea here is to convert X into a training dataset, D, where the phase of each pixel is represented as a function of its surrounding pixel phases (see Fig. 20). Once D is built, a supervised learning model is fitted to it to learn the conditional probability distribution of any individual pixel’s value given its surrounding pixel phases. This fitted model, rather than storing the data (i.e., the image), efficiently summarizes it and can be subsequently employed for fast and efficient reconstruction of statistically equivalent microstructures with arbitrary size.

Realizing X as a random sample from its underlying full joint distribution, $f(X)$, reconstruction of a statistically equivalent image Y of any size requires the (implicit) estimation of $f(X)$. Bostanabad et al. [90] proposed two methods to characterize $f(X)$ and subsequently reconstruct an image: a non-causal one based on Gibbs sampling [243] and a causal one. As the former approach is expensive and requires careful use of the Gibbs sampler, the latter is preferred [90, 113] and discussed hereafter.

To learn $f(X)$ for causal reconstruction, one can decompose it as:

$$f(X) = f(X_{11})f(X_{12}|X_{11})f(X_{13}|X_{11}, X_{12}) \cdots f(X_{n1,n2}|X_{11}, X_{12}, \ldots, X_{n1(n2-1)})$$

$$= f(X_{11}|X^{<11})f(X_{12}|X^{<12})f(X_{13}|X^{<13}) \cdots f(X_{n1,n2}|X^{<n1,n2})$$

(3-18)

where $X^{<ij}$ denotes the set of all the pixels in X ordered before X_{ij} (assuming a raster-scan order, see Fig. 21). The above decomposition illustrates that given a set of models that approximate the various conditional distributions on the right-hand side (and hence $f(X)$), Y can be reconstructed pixel-by-pixel via sampling from those models.

Fig. 20. MCR via supervised learning: (a) The original binary image X. The white and black colors represent phase values. (b) The magnified view of a small portion of X. The highlighted region (pixels within red boxes) represent an instance of a causal neighborhood with size $w = 2$. These pixels are rearranged into a row vector for building a training dataset. This procedure is repeated for all the pixels in X to convert it to a training dataset. (c) The reconstructed microstructure. The image is reproduced with kind permission from [113].

Fig. 21. Neighborhood and boundary effects in MCR via supervised learning: (a) The subset of the pixels indexed before Y_{ij} is the causal neighborhood (M_{ij}) of that pixel (here, M_{ij} is of size $w = 3$). The response pixel and those within M_{ij} are color-coded as, respectively, black and blue. The red and blue pixels are indexed before Y_{ij} while the yellow pixels are indexed after Y_{ij}. (b) The green region represents the reconstructed image (from the pseudocode above) and the blue pixels are added to its exterior so as its boundary pixels would not have missing data in their neighborhood. Here, the thickness of the blue region equals the neighborhood size ($w = 2$). The central part of the striped green region of size $s_1 \times s_2$ is chosen as the final reconstructed image.
To make the approximation of \(f(X) \) tractable and use only a single model for estimating all the conditional distributions in Eq. (3.18), Bostanabad et al. [90] assumed that \(X \) can be modeled as a form of stationary Markov random field (MRF) with the following properties:

- **Locality:** \(f(X_{ij}|X^{<ij}) = f(X_{ij}|M_{ij}) \) for a sufficiently large neighborhood \(M_{ij} \).
- **Stationarity:** \(f(X_{ij}|M_{ij}) \) does not depend on pixel location \((i,j)\).

In the above, \(M_{ij} \) contains a sufficiently large group of pixels surrounding one site of \(X_{ij} \) (see Fig. 21) and the conditional probability \(f(X_{ij}|M_{ij}) \) has a Bernoulli distribution with an event probability that depends on the pixel values in \(M_{ij} \) (for a binary microstructure image where the phase of interest is represented with 1, e.g., this event is defined as \(X_{ij} = 1 \)). \(M_{ij} \) is called the causal [244] neighborhood of \(X_{ij} \) because it only includes some of the pixels indexed (in a raster-scan order) before \(X_{ij} \).

The procedures for determining the size of \(M \) in a data-driven way via cross-validation (CV) is outlined in [90,113]. Briefly, the optimum neighborhood size is typically on the order of the largest topological feature in \(X \) and can be estimated by starting with a relatively large neighborhood and shrinking the size down until the cross-validation (CV) error is minimized. An attractive feature of the supervised learning approach is that it is almost insensitive to the chosen neighborhood size as long as it is not considerably small [90,113].

Once the size of \(M \) is chosen and \(D \) is built, any off the shelf supervised learning algorithm can be used to fit a model to it. Bostanabad et al. [90,113] used non-parametric classification trees [245–247] because they are particularly well suited for handling categorical variables and very computationally efficient to either fit or make predictions with.

Bostanabad et al. [113] improved the original methodology by (i) incorporating user-defined predictors into the supervised learning model, (ii) characterizing and reconstructing 3D microstructures, and (iii) introducing a reduced order model to reduce the size of \(D \) and avoid potential computational issues in 3D characterization.

MCR with supervised learning is applicable to a wide range of material systems (e.g. isotropic, anisotropic, and porous with high/low volume fraction). In this framework, the characterization has the following features:

- It does not necessitate any preprocessing procedure (e.g., choosing features and then conducting image analysis to calculate their statistics) and requires only one parameter (i.e., the neighborhood size).
- It is fast and only done once (unlike texture synthesis and multiple-point statistics reviewed in Section 3.5). If the size of \(D \) is considerably large, the potential computational issues (e.g., storing \(D \) or fitting cost) can be addressed via using a reduced order model [113].
- It would benefit from incorporation of user-defined predictors [113] especially those that characterize some physical features such as local \(V_r \) or connectivity.
- Cannot be readily used to arrive at the characterization of a 3D microstructure given some 2D samples as the joint probability distribution in 3D cannot be estimated from that in 2D.
- Other than some general trends, does not explicitly provide sensible physical features that can be used for material design. That is, the applicability of the model to various material systems comes at a price in that it is not straightforward to use this method and directly study the effect of some features (such as particle distribution on the effective properties) as there is no explicit descriptor or feature in the model.

3.4.3.2. Reconstruction. Once \(X \) is used to learn a model with an \(M \) of size \(w \), reconstruction of an image with arbitrary size \(s_1 \times s_2 \) in 2D is achieved pixel-by-pixel (voxel in 3D) by sampling from that model (see Fig. 21). The following steps summarize the procedure (the steps for 3D reconstruction are similar, see [113]):

1. **Build an initial image \(Y \) of size \((m_1 + w) \times (m_2 + 2w)\), with \(m_1 > s_1 \), and \(m_2 > s_2 \).**
 - For \(i = w + 1, w + 2, \ldots, w + m_1 \) (row)
 - For \(j = w + 1, w + 2, \ldots, w + m_2 \) (column)
 - a. Use the fitted model to predict the Bernoulli parameter \(p_{ij} = f(Y_{ij}|M_{ij}) \)
 - b. Generate \(Y_{ij} \sim \text{Bernoulli}(p_{ij}) \) and update the corresponding pixel in \(Y \).
2. **Pick the central part of \(Y \) with size \(s_1 \times s_2 \) as the reconstructed image.**

At the boundary pixels of \(Y \) not all the predictors are available in \(M \) (see Fig. 21) and so the predictions thereof will be noisy. To address this issue, Bostanabad et al. [90,113] recommend to reconstruct a larger image than required and choose the central part because the noise dies out as one moves away from the boundary regions. The size of the initial image (i.e., the differences \(m_1 - s_1 \), and \(m_2 - s_2 \)) depends on how its boundaries are initialized (the blue region in Fig. 21). The studies in [90,113] indicate that putting spliced copies of the original 2D image on the boundaries perhaps produces the best results where the differences can be set to \((m_1 - s_1, m_2 - s_2) \sim (w, 2w)\).

An appealing feature of reconstructing random media with supervised learning lies in the negligible computational costs; it only takes a few seconds to use the fitted model to reconstruct a batch of samples. Another attractive attribute is that the reconstruction procedure is independent of the material system and does not entail any calibration parameters. The
reconstruction quality, of course, depends on how well the supervised learner (i) is sampled during reconstruction, and (ii) models the original microstructure. The results in [90,113] illustrate that the procedures summarized above preserves the learned features very well, and so it can be concluded that the degree of statistical equivalency between the original microstructure image and the reconstructed ones (as well as the range of applications) depends on the quality of the fitted model in the characterization step.

3.5. Texture synthesis and multiple-point statistics

Texture synthesis originated in computer graphics and has a wide range of applications including occlusion fill-in, lossy image, video compression, and foreground removal. The basic idea here is to synthesize a (large) texture (i.e., a stationary image) given a small sample of the same texture (see Fig. 22). The early works in [248–250], and particularly that of Popat and Picard [251], established the general framework of texture synthesis, but it was the pioneering and highly recognized works of Efros and Leung [252] and then Wei and Levoy [253] and Efros and Freeman [254] that reformulated the problem of texture synthesis to an exemplar-based framework and provided more practical solutions. In short, these works addressed the ill-posed nature of the problem by assuming that the given texture sample comes from a stationary MRF and has the spatial locality property. Such assumptions, as discussed in Section 3.4.3.1, imply that the conditional probability distribution of brightness value of any pixel, given the brightness values of its neighboring pixels, is independent of the rest of the image.

Unlike the supervised learning method introduced in Section 3.4.3, the conditional probability distribution in Eq. (3-18) is not explicitly modeled in texture synthesis and an image is reconstructed by repeatedly querying the given sample. Specifically, the reconstruction is usually done pixel-by-pixel (voxel in 3D) in a specific order (e.g. raster scan), where each pixel’s value in the reconstructed image is found by searching for the pixel (or set of pixels) in the original image whose neighboring pixels best match the neighbors of the pixel to be generated. The methods largely differ in their choice of neighborhood geometry, definition of similarity, handling boundaries, and search method. For example, the basic procedure described in [253] to use a small exemplar (X) of size \(m_1 \times m_2 \) and synthesize an image (Y) of arbitrary size \(s_1 \times s_2 \) is summarized as follows:

- Build an initial (random) image \(Y \) of size \(s_1 \times s_2 \).
- Determine the size \((w) \) of the L-shaped causal neighborhood (see Fig. 21a).
- For \(i = 1, 2, \ldots, s_1 \) (row)
 - For \(j = 1, 2, \ldots, s_2 \) (column)
 - Build \(M_{ij} \), the causal neighborhood of the pixel \(Y_{ij} \).
 - Compare \(M_{ij} \) to the causal neighborhood of all the \((m_1 - w) \times (m_2 - 2w) \) non-boundary pixels in \(X \).
 - Choose the pixel in \(X \) whose neighborhood best matches \(M_{ij} \). Set the value of that pixel to \(Y_{ij} \).

Recognizing the microstructure image as a texture, the above methodology can be readily applied to MCR. Sundararaghavan [255] was perhaps the first to directly apply texture synthesis methods to MCR where he reconstructed 3D microstructures using three orthogonal 2D sectional images taken along the x-, y-, and z-planes (see Fig. 23). Following the procedures in [253], Liu and Shapiro [107] reconstructed various binary and grayscale microstructures in 2D/3D and illustrated the effectiveness of texture synthesis methods in preserving statistical equivalency.

Recently, texture synthesis methods have also been successfully applied to the reconstruction of the equilibrium state (i.e., a single image) [256] as well as the temporal evolution (i.e., a series of correlated images) [257] of polycrystalline...
microstructures. In the latter case, for example, one can conduct expensive phase field simulations for modeling polycrystalline grain growth \cite{258,259} on a relatively small domain and then use texture synthesis to enlarge the domain (see Fig. 24).

Texture synthesis based methods are applicable to various 2D/3D material systems (see e.g., Table 1 and Figs. 12 through 14 in \cite{107}) and can also be used to synthesize a 3D solid texture from a 2D exemplar \cite{107,255,260}, see also Fig. 23. They involve no fitted model for characterizing the microstructure and reconstruction is done by exhaustively searching for similar neighborhoods in the original image. This exhaustive search makes these methods computationally prohibitive for microstructures with long-range correlations or high resolution samples where a relatively large neighborhood is required in the search process. We note that, some texture synthesis methods \cite{254} use patches instead of pixels and hence are computationally more efficient (see \cite{261,262} for similar works in geostatistics). Also, use of Gaussian pyramids for multi-resolution synthesis (introduced in Section 3.5.1) is a common practice in texture synthesis.

Fig. 23. 2D to 3D reconstruction with texture synthesis: (a) Three 2D sectional images from the x-, y-, and z-planes, (b) reconstructed 3D microstructure, (c) 3D sectional views of the microstructure. The image is reproduced with kind permission from \cite{255}.

Fig. 24. Modeling polycrystalline grain growth with texture synthesis: The series of images illustrating grain coarsening on a small domain can be obtained via expensive phase field simulations (top row). MCR via texture synthesis can be used to enlarge this domain (i.e., the microstructure size) while preserving the statistics of the microstructure (bottom row).
The multiple-point statistics method is very similar to texture synthesis \[263\] in that a structure is modeled as a stationary MRF and then characterized by calculating and storing the conditional probabilities of finding a specific phase at a pixel, given the phases of a particular configuration of neighboring pixels. Thus, characterization is done implicitly; through exhaustive enumeration of all possible phase combinations for a variety of neighborhood shapes observed in the original sample. Reconstruction, similar to texture synthesis, is accomplished pixel-by-pixel through searching in the stored conditional probabilities for the training neighborhood that best matches that of the pixel being reconstructed, and subsequently sampling from the conditional probability associated with that neighborhood. Different methods primarily vary in the reconstruction order (e.g., random or raster scan), choice of neighborhood geometry, and search method. This method is mainly used in the geostatistics literature \[264–270\] where the study of porosity in geological structures (such as sandstone) is of particular interest (see Fig. 25).

In texture synthesis and multiple-point statistics methods, perhaps the most important parameter is the neighborhood size. This parameter greatly affects the results \[107,252,255–257\] and is oftentimes chosen manually via ad hoc methods, e.g., to arrive at visually appealing results or minimize some predefined cost measure. For instance, Liu and Shapiro \[107\] show that the chosen neighborhood size affects the quality (e.g., the preserved randomness) of the results and recommend to set it to the range after which the two-point correlation function dies out.\(^4\) In addition, Harrison \[271\] illustrates that the reconstruction order (e.g. a bottom-up raster-scan vs. a top-down raster-scan) usually affects the results in texture synthesis (and so in multiple-point statistics) in that the spatial correlations might not be preserved. Addressing these issues in 3D MCR is particularly challenging because on the one hand, 3D microstructures are much more complex than 2D ones, and on the other hand the associated computational costs are significantly higher. Although applicable to a wide variety of material systems in 2D and 3D, texture synthesis and multiple points statistics cannot be readily applied to material design or building PSP links because the characterization is implicit and does not explicitly quantify the topological features.

We note that, herein we focused on exemplar-based texture synthesis and multiple-point statistics methods as they provide more practical solutions and are evidently more appealing to the materials science community. Texture synthesis in the computer graphics community has also been done via parametric MRF models \[272,273\] (where, similar to Section 3.3.1, the model is fitted to the microstructure image, and then used to reconstruct new microstructures) and statistics matching \[248,249,274,275\] (the statistics being, e.g., the pixels’ brightness histogram or distribution of filter responses) approaches. Similarly, in geosciences, variogram-based \[276\] and parametric \[277\] approaches have also previously been used to model (spatial) correlations in data.

3.5.1 Multi-resolution reconstruction via Gaussian pyramids

The exhaustive search for similar neighborhoods makes the methods introduced in Section 3.5 computationally demanding. To address this issue (esp. when a large neighborhood is required to capture the long-range correlations), and ensure convergence to a statistically equivalent image, Gaussian pyramids have been used in many works. Essentially, such pyramids are constructed by stacking instances of an image at different resolutions upon one another (see Fig. 26), with the largest (i.e., the one with the highest resolution) and smallest images located at, respectively, the base and top of the pyramid.

One strategy to leverage Gaussian pyramids for speeding up an MCR technique (e.g., texture synthesis or the YT method discussed in Section 3.1.2) is as follows:

\(^4\) Perhaps a better estimate might be made using the SDF because it characterizes a structure more clearly as illustrated in Section 3.3.

\(^5\) Due to simplicity and greater spatial localization, Gaussian pyramids are commonly preferred to other pyramids such as Laplacian, steerable, and feature-based.
those which aim to recover the original microstructure). We also comment on the relative same level (e.g., Gaussian pyramids: The four-level pyramids of the original microstructure image (a) and the reconstructed one (b). The microstructures at the same level (e.g., \(X_1\) and \(Y_1\)) are statistically equivalent.

- Build the pyramid (see Appendix A.2) of the original image, \(X\), with \(n\)-levels. Denote the image at level \(i (i = 0, 1, \ldots, n – 1)\) with \(X_i\).
- Reconstruct a microstructure, \(Y_{n-1}\), that is statistically equivalent to \(X_{n-1}\).
- For \(k = 1, 2, \ldots, n – 1\) (go through levels)
 a. Generate \(Y_{n-k-1}\) by up-sampling \(Y_{n-k}\) (see Appendix A.2).
 b. Optimize \(Y_{n-k-1}\) (e.g., via the YT method or texture synthesis) to ensure its statistical equivalency to \(X_{n-k-1}\).

This hierarchical process results in a Gaussian pyramid for the reconstructed image where each level can be considered as a statistically equivalent microstructure image to the corresponding level of the original image’s Gaussian pyramid (see Fig. 26). Generally, more speed-up is gained by increasing the number of levels, but caution must be taken because if \(X_{n-1}\) (the image at the highest pyramid level) does not entail the essential morphological details of \(X_0\), either \(Y_0\) might not converge (to a statistically equivalent image to \(X_0\)), or the computational costs might start to increase (due to increased optimization costs in step b).

4. Remarks

Having elaborated on various MCR methods in Section 3, in this section we summarize the key findings and provide some guidance as to which methods can be applied to a particular problem. The discussions are focused around the methods that utilize the characterized information from a given sample to reconstruct statistically equivalent microstructures (rather than those which aim to recover the original microstructure). We also comment on the relative computational cost and accuracy (in terms of ensuring the statistical equivalency between the original and reconstructed microstructures) of each method.

4.1. Statistical functions

MCR via statistical functions provides a very general framework for the characterization and reconstruction of various material systems (such as anisotropic, porous, and multiphase) in 2D or 3D. Assuming the statistical functions of an unknown 3D structure are the same as those of the given 2D image(s), this approach can also be used to reconstruct 3D structures given a (set of) 2D samples.

While multiple functions can be used for characterization, prior research has demonstrated that two-point correlation, lineal-path, and two-point cluster correlation functions (denoted, respectively, with \(S_2(r), L(r)\), and \(C_2(r)\) for an isotropic material) sufficiently characterize a wide range of material systems. For anisotropic or multi-phase (i.e., more than two phases) microstructures, the selected functions must take into account, respectively, the direction of anisotropy and all the necessary phase-to-phase correlations. See Section 3.1.1 for some detailed discussions on \(S_2(r), L(r)\), and \(C_2(r)\).

With statistical functions, the reconstruction is usually done via the stochastic optimization (aka Yeong and Torquato or YT) method reviewed in Section 3.1.2. The YT method ensures (by minimizing Eq. (3–4)) that the selected statistical functions of the reconstructed sample are similar to those of the original microstructure.

In this framework, the accuracy depends on the choice of the statistical functions (more functions are required to accurately characterize complex microstructures) as well as the efficiency of the reconstruction step in preserving those functions in the reconstructed sample. The overall computational cost, however, mainly depends on the reconstruction step: while the statistical functions of the original sample are only evaluated once during characterization, those of the sample being reconstructed are evaluated many times in reconstruction. Although incorporating more functions in Eq. (3–4) provides more accuracy, this would notably increase the reconstruction cost. Hence, based on the available resources and desired accuracy, a compromise has to be devised. In Section 3.1.2.2, we elaborated on various techniques that can significantly speed up the reconstruction with the YT method.

In the YT method, one has to carefully implement the SA algorithm to achieve sufficient accuracy (i.e., minimize \(E\) in Eq. (3–4)) with a manageable computational cost. The adjustment procedure might not be straightforward and even with the best parameters the reconstruction cost using this method is generally expected to be high (hours to days, depending on
the problem). The GD algorithm, as opposed to SA, only has one adjustable input and has been shown to minimize E (in Eq. (3.4)) faster for simple structures that are completely characterized by $S_2(r)$. Further research must be conducted to investigate the efficiency of GD for complex microstructures.

Finally, we note that this framework is generally not applicable to building PSP links or materials design because (i) the statistical functions do not characterize the microstructure with physically meaningful parameters (even if the functions are approximated with some parametric form, such parameters cannot be easily related to sensible microstructure features), and (ii) the YT method is too expensive for an iterative microstructure design process.

4.2. Physical descriptors

Descriptor-based approaches are applicable to the MCR of crystalline and particulate structures. Such methods may also be used when the morphology can be approximated with some configuration of certain descriptors (see, e.g., Fig. 11b). Using the stereological techniques and with some mild assumptions, this method enables reconstruction of 3D microstructures given 2D samples.

Here, the most important step lies in the choice of the set of descriptors for microstructure characterization. As discussed in Section 3.2, many descriptors can be considered but oftentimes a subset of them sufficiently characterizes a particular structure and so the decision depends on the material system and properties of interest. Prior experience or dimensionality reduction methods such as linear embedding or principal component analysis (see Section 3.2.3) can be used for this purpose. These descriptors (and their distributional characteristics) are either obtained from an available microstructure sample (via image analysis) or defined by the user (e.g., for designing a microstructure). In the latter case, it must be ensured that the chosen values for the set of descriptors correspond to a feasible microstructure.

The reconstruction procedure, though often involving optimization, is not costly and commonly takes minutes to hours depending on the problem. The parameters controlling the reconstruction step (e.g., those of the SA algorithm in the optimization step) have to be adjusted for optimal performance and cost but oftentimes this process is more straightforward than that discussed in Section 4.1.

Perhaps the most useful features of this method are on sensible and parametric characterization which make it straightforward to apply this method to material design. In particular, these features enable the integration of this framework with metamodeling techniques to build processing-structure or structure-property links (see Section 5.1 for an example).

4.3. SDF

SDF provides a systematic approach for characterizing the high-dimensional microstructure morphology in the frequency space. Though essentially equivalent to the two-point correlation function (see Section 3.3.1), microstructure quantification via the SDF better represents the prominent morphological features than the two-point correlation function (see, e.g., Fig. 15). This clear representation of microstructure, makes the parametrization of SDF (with potentially physics-aware parameters) easier.

As described in Section 3.3, with the SDF representation of a microstructure multiple methods (such as disk packing and Cahn’s scheme) can be used to reconstruct statistically equivalent microstructures. These methods are fast (taking seconds to minutes depending on the problem), mostly analytical, and (as opposed to the optimization methods discussed above) don’t entail much tuning. Such fast reconstruction techniques, along with a parameterized SDF representation, enable the use of SDF-based approaches for design and building processing-structure and structure-property links, esp., in optical applications (see Section 5.2 for an example). In addition, assuming an unknown 3D structure possesses the same SDF representation as a given 2D image, these reconstruction techniques can reconstruct 3D structures given a 2D sample.

Finally, we note that the equivalency between the SDF and $S_2(r)$ representations implies that SDF-based methods are applicable to isotropic binary materials that are completely (or to a good degree) characterized with their two-point correlation function.

4.4. Supervised learning

The supervised learning approach introduced in Section 3.4.3 can be applied to various material systems such as multiphase, isotropic, and anisotropic in 2D or 3D. However, it cannot recover (or reconstruct) a 3D structure given some 2D samples because the underlying joint distribution of pixels (voxels in 3D) cannot be learned from that in 2D. In addition, because the characterization step (without any user-defined predictors) does not result in necessarily sensible or physically meaningful parameters, the supervised learning approach is not directly applicable to material design or building PSP links.

Perhaps the most attractive features of this approach lie in its flexibility, simplicity, and speed. These features make the approach significantly efficient for building an ensemble of statistically equivalent samples for a wide range of material systems. The only adjustable parameter here is the neighborhood size which, as opposed to texture synthesis, does not noticeably affect the reconstruction accuracy as long as it is large enough. As for the cost, the characterization is done once and usually takes a few seconds (or minutes for 3D structures) while the reconstruction is almost instantaneous in 2D and takes seconds in 3D. Incorporating user-defined predictors into the characterization step (and using them accordingly in
reconstruction) can significantly improve the efficiency of this approach and more research needs to be conducted to investigate this.

Finally, we note that because the supervised-based learning approach learns (i.e., fits a model to) the underlying joint distribution of the morphology, it can be used to develop a methodology for diagnosing microstructural defects in manufactured products [47].

4.5. Texture synthesis

Although well established in computer graphics, (non-parametric) texture synthesis methods have only been recently applied to MCR. Nevertheless, they have been successfully adopted to a wide range of multi-phase, anisotropic, static, and dynamic (i.e., temporally evolving) material systems. In addition, reconstruction of a 3D structure given some 2D samples is also achievable with texture synthesis. Unlike other methods discussed in this section, the characterization step cannot be separated from the reconstruction step in texture synthesis as the original microstructure image (rather than some characterized information from it) is constantly used during the reconstruction.

Through multi-resolution reconstruction (see Section 3.5.1) and careful implementation, texture synthesis methods can reconstruct microstructures of moderate size relatively fast. Here, Perhaps the determination of the neighborhood size is the most important procedure. This parameter, as detailed in Section 3.5, greatly affects both the cost and accuracy and should be determined with caution. The texture synthesis methods applied to MCR do not characterize the structure with any physically meaningful parameters and so cannot be used for material design or building PSP links in a straightforward manner.

5. Applications of MCR in materials modeling and design

In this section, we provide two examples on the use of MCR in materials modeling and design. In the first example, physical descriptors are used to create a microstructure dataset which is then used for finding the constitutive law of a class of polymer composites. In the second example, the SDF is used to characterize the structure in nanodielectrics and map it to the system properties (i.e., permittivity and dielectric loss).

5.1. Constitutive law modeling of fibrous composites via physical descriptors

In order to accurately simulate the material properties of composites, it is necessary to perform multiscale FEA to account for the hierarchical material structure spanning multiple length scales. Because for most composites the general form of the constitutive law is unknown, it is necessary to rely on direct numerical simulation (DNS) techniques [278–280] in multiscale FEA. In a two-scale material (see Fig. 2), e.g., DNS requires solving nonlinear problems simultaneously at two scales: At each increment in the macroscopic simulation the strain state is prescribed to all the integration (aka Gauss or material) points. These strain states determine the boundary conditions for solving the corresponding nonlinear problems at the microscale where the solution gives the stress for the next iteration of the macroscopic FEM calculation.

While DNS is quite flexible and accurate for a wide range of materials, it is very expensive; rendering DNS-based multiscale design of materials insurmountable. Herein, we demonstrate how MCR via physical descriptors, coupled with machine learning techniques, can be applied to learn the constitutive law of a class of microstructures over a wide range of morphologies and strain states (i.e., boundary conditions). The practical significance would be to notably decrease the computational costs of a macroscopic simulation by replacing the finite element simulations at the microscale with a supervised learner that models the material law. This dramatic speed-up, subsequently, would allow a designer to determine which microstructure morphology will result in the desired properties at the macroscale. For a more complete description of the case study, see [281].

The 2D material system consists of a matrix filled with identical over-lapping inclusions. The matrix and inclusions are governed by, respectively, Arruda-Boyce [282] and Neo Hookean [283] hyperelastic laws and the goal is to learn the constitutive law of the composite as a function of the morphology over a wide range of boundary conditions (i.e., the applied macroscopic strain field). In hyperelastic materials (see Appendix A.3 for more details), the work is independent of the load path and hence, such materials are completely characterized by the existence of a stored (or strain) energy function, W, that is a potential for the stress, \mathbf{S}. In particular:

$$\mathbf{S} = \frac{\partial W(\mathbf{\varepsilon})}{\partial \mathbf{\varepsilon}},$$

(5-1)

where $\mathbf{\psi}$ is the stored energy potential, $\mathbf{\varepsilon}$ is the applied macroscopic Green strain tensor, and the overhead bars of W and \mathbf{S} indicate that the values are homogenized over the microstructure domain.

The physical descriptors chosen to characterize the composite are: volume fraction (V_f), mean distance of nearest neighbors (r_d), aspect ratio (α_{asp}), and the number of inclusions (N). Given a feasible set of values for these descriptors, the procedure outlined in [30] (summarized in Section 3.2.2) is used to reconstruct a microstructure sample (see Fig. 27).

While no finite set of physical descriptors may completely characterize such a material system, studies on the uncertainty quantification illustrated [25] that these descriptors were sufficient and the reconstructed microstructures were large
enough to be an RVE. The boundary conditions for the microstructure were set to be the macroscopic applied strain, \(\varepsilon = (\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12})^T \). This creates a design space with seven inputs, four physical descriptors and three boundary conditions (see Table 2 for the ranges), and a single response, the homogenized potential density, \(W \). Ultimately, it is desired to create a model that can quickly and accurately determine the gradient of the response (i.e., the homogenized 2nd Piola Kirchhoff stress, \(S \), in the macroscale) with respect to the applied boundary conditions as a function of the aforementioned seven descriptors.

To generate the data needed to learn the constitutive law and validate the results, a design of experiments (DoE) of size \(10^4 \) was generated for the seven inputs via Sobol sequence [284,285]. The physical descriptor components of the DoE were next used to reconstruct the corresponding RVEs. The RVEs and the corresponding boundary conditions from the DoE then served as inputs to the DNS, from which the homogenized response was obtained.

Once the dataset was created, supervised learning techniques [286,287] were used to learn the constitutive law. As with most supervised learning models, once fitted, the model is extremely efficient at performing future predictions and can reduce the multiscale FEA costs by replacing the finite element simulations at the microscale. As for the supervised learner, subsets of the first 8000 data points were used to train single layer neural networks as well as polynomial regressors (where all the parameters were determined via CV) while the last 2000 data points were preserved for calculating the average prediction errors for both the potential \((e_W) \) and the stress \((e_{|S|}) \):

\[
e_W = \frac{100}{N_{\text{samples}}} \sum_{i=1}^{N_{\text{samples}}} \left(1 - \frac{W_i^{\text{predicted}}}{W_i^{\text{target}}} \right)^2 \%	ag{5-1}
\]

and

\[
e_{|S|} = \frac{100}{N_{\text{samples}}} \sum_{i=1}^{N_{\text{samples}}} \frac{\left(|S_i|^{\text{predicted}} - |S_i|^{\text{target}} \right)^2}{\left(|S_i|^{\text{target}} \right)^2} \%	ag{5-2}
\]

Table 2

Descriptors and their ranges: There are four physical descriptors and three strain components characterizing, respectively, the microstructure morphology and boundary conditions.

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_f)</td>
<td>[2.45]%</td>
</tr>
<tr>
<td>(r_d)</td>
<td>[0.3, 0.5] mm</td>
</tr>
<tr>
<td>(\delta_{\text{asp}})</td>
<td>[1.5]</td>
</tr>
<tr>
<td>(N)</td>
<td>[40, 100]</td>
</tr>
<tr>
<td>(\varepsilon_{11})</td>
<td>[−10, 150] %</td>
</tr>
<tr>
<td>(\varepsilon_{22})</td>
<td>[−10, 150] %</td>
</tr>
<tr>
<td>(\varepsilon_{12})</td>
<td>[−40, 40] %</td>
</tr>
</tbody>
</table>
where $N_{\text{samples}} = 2000$, $W_{\text{predicted}}^i$ and $S_{\text{predicted}}^i$ are the predictions from the supervised learner, and W_{target}^i and S_{target}^i are obtained via FEA. Fig. 28 summarizes the results and illustrates that the fitted neural networks outperform the polynomials and can achieve negligible errors in predicting both the homogenized response (i.e., W) as well as its gradient (i.e., S).

This case study demonstrates how MCR can be directly applied to the field of materials design by allowing the designer to quickly and efficiently explore a very large design space using response surface models of structure-property relations that would otherwise be too vast and expensive to explore. The approach we used can be readily generalized and applied to a wide range of materials whose microstructure can be well-defined by a set of physical descriptors and for which an accurate simulation model already exists. Additional applications of this work can include studying the impact of the choice of descriptors, as well as model uncertainty on the response of the microscale RVE, and more importantly, on the macrostructure (e.g., via Markov chain Monte Carlo).

5.2. Elucidation of structure-property links in nanodielectrics via SDF

The spatial dispersion of fillers in nanodielectrics is a critical structural feature that determines the dielectric properties such as permittivity and dielectric loss. The morphology of such materials possesses some special features including: (i) low volume fraction, (ii) uneven distribution of clusters (heterogeneity), and (iii) irregularly-shaped large agglomerates that cannot be modeled using simple geometries (e.g., a disk or ellipse). Although such structures are particulate, the above features affect the performance of the descriptor based approach (detailed in Section 3.2) because the associated reconstruction algorithm generally requires simple particle geometry and relatively even particle distribution. Here, we reconstruct realistic microstructures using the SDF based approach and illustrate the applications of SDF in establishing structure-property relations for microstructure design.

As illustrated in Fig. 29, a narrow range of frequencies in the SDF is a sign of having clustered and unevenly distributed particles in the real space. In contrast, with a broader SDF the particles are expected to be well dispersed. In this study, we choose the gamma distribution [288], governed by the two parameters κ and θ, to parametrize the SDF curves of nanodielectrics. By analyzing all the available samples (collected from several nanodielectric systems with similar polymer dielectric permittivity), it was found that the fitted κ is approximately a constant (1.1) while the fitted θ varies considerably;

Fig. 28. Convergence studies for the fitted neural networks and the polynomial regressors: As the size of the training dataset increases, the prediction of the homogenized potential (left y-axis) improves, with neural networks outperforming polynomials. The prediction error of the magnitude of the homogenized 2nd Piola Kirchhoff stress (right y-axis), however, decreases consistently only for the neural networks.

Fig. 29. Characterization of nanodielectrics with SDF: Each SDF (and hence the corresponding microstructure) can be characterized by a single parameter θ. As θ increases, the number of particles and their dispersion increases.
with a large θ indicating more dispersion. This finding allows to characterize each microstructure by only one single parameter; θ.

To explore the relationship between θ and the dielectric properties, five structures were reconstructed using GRF (Section 3.3.2.1.1) with θ varying from 0.5 to 2.5, κ fixed (to 1.1), and a ν_f of 2%. The dielectric permittivity and loss of these microstructures were then calculated via FEA for an epoxy-silica system. The results are summarized in Fig. 30 and indicate that both permittivity and dielectric loss ($\tan\delta$) are positively correlated with the dispersion parameter θ. Such a correlation indicates that a trade-off needs to be made because higher permittivity is desired for better storage capabilities while a lower dielectric loss is preferred to reduce energy dissipation. The simple (almost) linear relationship also demonstrates the elegance of SDF: the parameter θ of SDF in the frequency space is a complex combination of various features in the real-space that represents the overall dispersion status of the structure and thus leads to a simple structure-property relationship. With the established relationships, one can optimize the parameter θ to achieve a desired balance between energy storage and dissipation.

6. Conclusion

Accelerated materials design calls for significant and concerted efforts on both experimental and computational aspects of materials science. On the computational side, one avenue of research has been devoted to building processing-structure-property relations for different material systems at various length-scales. We believe that microstructure characterization and reconstruction, coupled with machine learning and computer simulations, provides a systematic framework to generalize existing links or build new ones by statistically going beyond the limits where the data is available. To this end, herein we reviewed the recent progress on this topic in the hope to provide the scientific community with some guidance on how to apply the general MCR framework (see, e.g., Fig. 3) to materials analysis and (inverse) design.

The most common MCR methods (along with their algorithmic details, applicability, and associated challenges and costs) were reviewed in detail in Section 3 where, if possible, the characterization step was separated from the reconstruction step to help the reader better follow the overall procedure of each method. We briefly compared the various methods and summarized their advantages and disadvantages in Section 4. Two examples on the applications of MCR in materials design and modeling were also demonstrated in Section 5.

We believe the numerous works reviewed herein, though not perfectly comprehensive, clearly demonstrate the significance and the potentials of the role that MCR plays in materials science. More research and in-depth studies must be conducted to further develop the various MCR methods (esp. the recently developed ones based on machine learning and SDF) and seamlessly integrate them with computer simulations (such as FEA) and data-mining techniques to tackle the state-of-the-art materials design challenges including building sensible processing-structure links in additive manufacturing, constitutive modeling of composites, uncertainty quantification and propagation in multiscale materials design, Bayesian calibration and bias correction of phenomenological material models, and so on.

Acknowledgement

This work is supported by the U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD) award 70NANB14H012, National Science Foundation Award No. CMMI-1265709, and the Air Force Office of Scientific Research (AFOSR) Award No. FA9550-12-1-0458. The authors would also like to thank Stephen Lin for conducting the phase field simulations for Fig. 24.
Conflict of interest

The authors disclose no actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations that could inappropriately influence, or be perceived to influence, their work.

Author Contributions

W.C. and R.B. initiated the review process. R.B. gathered the relevant literature and categorized the methods. All the authors determined the structure of the paper and contributed to the discussions. R.B. wrote the paper with help from Y.Z. (in Sections 3.3 and 5.2), X.L. (in Sections 3.2.3, 3.4.1, and 3.4.2), and T.K. (in Section 5.1). All the authors have read the manuscript and actively participated in the entire revision process.

Appendix A

A.1. Morphological operations: dilation and erosion

Morphological operations apply a structuring element object (SEO) to an input image (2D or 3D) to create an output image with the same size. In such an operation, the value of each pixel (voxel in 3D) in the output image is determined by comparing the corresponding pixel in the input image with an appropriately defined neighborhood of its surrounding pixels. The shape and size of the neighborhood is determined by the SEO and can make the morphological operation sensitive to specific shapes in the input image.

Dilation and erosion are the most basic morphological operations. They are available in almost all commercial software and take fractions of a second to execute. While dilation adds pixels (voxels in 3D) to the boundaries of the foreground (objects) in an image, erosion removes pixels from the object boundaries (see Fig. 31). More specifically, in dilation (erosion) the value of the output pixel is the maximum (minimum) value of all the pixels in the input pixel’s neighborhood. In dilating (eroding) a binary image, if any of the pixels in the input image is 1 (0), the corresponding pixel in the output image will be 1 (0).

A.2. Gaussian pyramid for image compression

The Gaussian pyramid [244] (aka, hierarchical discrete correlation [143]) is commonly used in image analysis to decorrelate the neighboring pixels (voxel in 3D) and arrive at a compact representation of the image (see [289] for a review on image compression techniques). The compact representation of an image allows to, e.g., enhance the salient image features (such as edges and foreground objects) and reduce storage space or sampling rate.

Let X_0 be the original image and X_1 be the reduced version of it after low-pass filtering (which is done by convolving the image with a family of local and symmetric weighing functions). Define X_2, \ldots, X_n similarly. The sequence of the images X_1, \ldots, X_n, as visualized for a 2D image in Fig. 26, resembles a pyramid where X_1 and X_n are located, respectively, at the base and top of the pyramid. If the filtering function approximates a Gaussian distribution function, the resulting pyramid is called the Gaussian pyramid.

Although there are various image compression techniques available, the Gaussian pyramid has attracted much attention in MCR literature because, as described in Section 3.5, it reduces the overall computational costs through hierarchical reconstructions. Below, we demonstrate how a Gaussian pyramid can be built in either a bottom-up or top-down procedure for a 1D signal. The procedure is similar in 2D and 3D.

Let $w(u)$ be a discrete weighing function defined at integer values and non-zero only for $-m \leq u \leq m$. $w(u)$ is constrained by the following equations [143]:

![Fig. 31. Pedagogical illustration of dilation (right panel) and erosion (left panel) with two different binary SEOs on a binary image (black background and white foreground): Through dilation (erosion) with each SEO, the green (red) pixels will be added to (removed from) the foreground in the original image. The SEOs are shown below each image.](image-url)
Normalization: \[\sum_{i=-m}^{m} w(i) = 1, \] (A-1)

Symmetry: \[w(u) = w(-u) \text{ for all } u, \] (A-2)

Unimodal: \[w(u_1) \geq w(u_2) \geq 0 \text{ for } 0 \leq u_1 \leq u_2, \] (A-3)

Equal contribution: \[\sum_{i=-m}^{m} w(j + ir) = \frac{1}{r} \text{ for all } 0 \leq j < r, \] (A-4)

where \(r \) is the sampling order (e.g., to reduce the number of nodes across the Gaussian levels to half or one-third, respectively, \(r \) would be 2 and 3). Eq. (7-4) stipulates that all the nodes at any particular level must contribute the same total weight to the nodes at the next higher level. If \(m = 2 \), e.g., the above constraints are satisfied when \(w(0) = a \), \(w(-1) = w(1) = \frac{1}{4} \), and \(w(-2) = w(2) = \frac{1}{4} \) with \(\frac{1}{4} \leq a \leq \frac{1}{2} \). Having defined the weighing function, the value of node \(i \) at pyramid level \(n \), \(X_{n;i} \), is then calculated as:

\[X_{n;i} = \sum_{u=-m}^{m} w(u) X_{n-1;r;i+u}, \] (A-5)

Eq. (7-5) is repeatedly used \(n \) times to build the Gaussian pyramid. This procedure of reducing (down-sampling or coarsening) a signal for one level is schematically illustrated in Fig. 32a. To up-sample or expand a signal (i.e., to do the opposite of the above procedure):

\[Y_{n-1;i} = r^D \sum_{u=-m}^{m} w(u) Y_{n;r;i+u}, \] (A-6)

where \(D \) is the dimensionality of the signal (here \(D = 1 \)) and only the terms for which \(\frac{i}{r} \) is an integer are included in the summation. Expansion of a 1D signal for one level is illustrated in Fig. 32b.

Fig. 33 illustrates how the above procedure can be used in 3D to build a three-level Gaussian pyramid (i.e., by coarsening the original image twice). As it can be observed, each level of the pyramid contains less morphological details compared to its lower levels.

A.3. Hyperelastic materials

Hyperelastic materials provide a natural framework for the frame-invariant formulation of anisotropic material response by simply embodying the anisotropy in the potential, \(W \). A consequence of the existence of a stored energy function is that the work done on a hyperelastic material is independent of the deformation path. This behavior is approximately observed in many rubber-like materials [283].

The energy density function of the Arruda-Boyce model, \(\psi_{AB}(C) \), depends on three polymer properties (the initial bulk modulus \(K_0 \), the initial shear modulus \(\mu_0 \), and the stretch at which the polymer chain network locks \(\lambda_m \)) and is given by:

\[\psi_{AB}(C) = \mu \sum_{i=1}^{5} \lambda_i \beta^{i-1} (\beta^i - 3) \left(\frac{J^2 - 1}{2} - \ln(J) \right), \] (A-6)

Fig. 32. Gaussian pyramid: 1D illustration of (a) reducing and (b) expanding a signal (with sampling order, \(r \), of 2) to build a Gaussian pyramid. Only two levels of the Gaussian pyramids are shown where each row of nodes represents a level in the pyramid. In reduction (expansion), the value of each node at higher (lower) levels is obtained through a weighted sum of the node values at the lower (higher) level. Here, the node spacing doubles across the levels while the same filtering function would be used across the levels.
where $\beta = \frac{1}{\alpha_{m}}$, $\alpha_{1} = \frac{1}{2}$, $\alpha_{2} = \frac{1}{20}$, $\alpha_{3} = \frac{11}{1000}$, $\alpha_{4} = \frac{49}{1000}$, and $\alpha_{5} = \frac{519}{875 \times 750}$ are all obtained via the first five terms of the inverse Landau function. J is the determinant of the deformation gradient, $I_{1} = Tr(C)$, and μ is calculated from the material properties λ_{m} and μ_{0}:

$$ \mu = \frac{H_{0}}{2} \left(\sum_{i=1}^{5} \lambda_{m}^{i-1} \right)^{-1} $$

(A-6)

In the example of Section 5.1, the matrix material properties are chosen as follows:

$K_{0}^{mat} = 800$ MPa, $\mu_{0}^{mat} = 180.5$ MPa, $\nu_{m}^{mat} = 0.5$

The energy density function of the Neo-Hookean model, $\psi_{N\kappa}(C)$, is defined as [283]:

$$ \psi_{N\kappa}(C) = \frac{H_{0}}{2} (I_{1} - 3) + \frac{K_{0}}{2} (J - 1), $$

(A-7)

and the chosen values for the example in Section 5.1 read $K_{0}^{par} = 4.0$ GPa and $\mu_{0}^{par} = 1.9$ GPa.

References
